搞了四天的REID环境配置

2024-01-31 01:32
文章标签 配置 环境 reid 四天

本文主要是介绍搞了四天的REID环境配置,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

我先跟大家说一下我存在的哪几类报错吧

1.c++的依赖环境没安装   (安装c++的依赖环境链接:https://pan.baidu.com/s/1FzIyQ1OpxI7DxNCUwyot2Q 提取码:ux9q )

2.Broken pipe 报错  (把ImageDataManager函数中workers设置为0)

 

3.我在重新安装命令python setup.py develop的时候存在

D:\Study- Place\AI\YOLO\Yolov5_DeepSort_Pytorch\REID\reid-original\deep-person-reid-master\torchreid\metrics\rank_cylib\rank_cy.cp37-win_amd64.pyd 拒绝访问的问题

(你把这个文件删除就可重新安装了)

正文开始

首先到https://github.com/KaiyangZhou/这下载源码

解压完成后就是这样的文件形式

然后cd到文件目录下

 执行这下面这几条命令(并且在其中全点y)

conda create --name torchreid python=3.7
conda activate torchreid
pip install -r requirements.txt
conda install pytorch torchvision cudatoolkit=9.0 -c pytorch  (这条命令你需要在torch官网上查询对应torch版本 (建议使用anaconda下载,我下的是11.3的版本))
python setup.py develop

 

然后显示Finish的字样就是完成了

尝试pip show torchreid看看是否存在问题,显示正常信息那就不存在问题了

这是我文件的目录 reid.py是训练代码

# 模块引入
import torchreid
import torch
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# 加载数据管理器
datamanager = torchreid.data.ImageDataManager(root='reid-data',sources='market1501',targets='market1501',height=256,width=128,batch_size_train=32,batch_size_test=100,transforms=['random_flip', 'random_crop']
)
# 构建模型、优化器和lr_scheduler
model = torchreid.models.build_model(name='resnet50',num_classes=datamanager.num_train_pids,loss='softmax',pretrained=True
)model = model.to(device)
#model = model.cuda()
optimizer = torchreid.optim.build_optimizer(model,optim='adam',lr=0.0003
)scheduler = torchreid.optim.build_lr_scheduler(optimizer,lr_scheduler='single_step',stepsize=20
)
# Build engine
engine = torchreid.engine.ImageSoftmaxEngine(datamanager,model,optimizer=optimizer,scheduler=scheduler,label_smooth=True
)
# 进行培训和测试
engine.run(save_dir='log/resnet50',max_epoch=60,eval_freq=10,print_freq=10,test_only=False
)

数据集我是用的是market1501数据格式是这样的

 数据集market1501在csdn上一查就有

代码教程是在How-to — torchreid 1.4.0 documentation (kaiyangzhou.github.io)上的

 

这篇关于搞了四天的REID环境配置的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/662189

相关文章

鸿蒙中Axios数据请求的封装和配置方法

《鸿蒙中Axios数据请求的封装和配置方法》:本文主要介绍鸿蒙中Axios数据请求的封装和配置方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1.配置权限 应用级权限和系统级权限2.配置网络请求的代码3.下载在Entry中 下载AxIOS4.封装Htt

Spring中配置ContextLoaderListener方式

《Spring中配置ContextLoaderListener方式》:本文主要介绍Spring中配置ContextLoaderListener方式,具有很好的参考价值,希望对大家有所帮助,如有错误... 目录Spring中配置ContextLoaderLishttp://www.chinasem.cntene

浅谈配置MMCV环境,解决报错,版本不匹配问题

《浅谈配置MMCV环境,解决报错,版本不匹配问题》:本文主要介绍浅谈配置MMCV环境,解决报错,版本不匹配问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录配置MMCV环境,解决报错,版本不匹配错误示例正确示例总结配置MMCV环境,解决报错,版本不匹配在col

Nginx中配置HTTP/2协议的详细指南

《Nginx中配置HTTP/2协议的详细指南》HTTP/2是HTTP协议的下一代版本,旨在提高性能、减少延迟并优化现代网络环境中的通信效率,本文将为大家介绍Nginx配置HTTP/2协议想详细步骤,需... 目录一、HTTP/2 协议概述1.HTTP/22. HTTP/2 的核心特性3. HTTP/2 的优

Python 安装和配置flask, flask_cors的图文教程

《Python安装和配置flask,flask_cors的图文教程》:本文主要介绍Python安装和配置flask,flask_cors的图文教程,本文通过图文并茂的形式给大家介绍的非常详细,... 目录一.python安装:二,配置环境变量,三:检查Python安装和环境变量,四:安装flask和flas

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

SpringBoot日志配置SLF4J和Logback的方法实现

《SpringBoot日志配置SLF4J和Logback的方法实现》日志记录是不可或缺的一部分,本文主要介绍了SpringBoot日志配置SLF4J和Logback的方法实现,文中通过示例代码介绍的非... 目录一、前言二、案例一:初识日志三、案例二:使用Lombok输出日志四、案例三:配置Logback一

springboot security之前后端分离配置方式

《springbootsecurity之前后端分离配置方式》:本文主要介绍springbootsecurity之前后端分离配置方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的... 目录前言自定义配置认证失败自定义处理登录相关接口匿名访问前置文章总结前言spring boot secu

一文详解SpringBoot响应压缩功能的配置与优化

《一文详解SpringBoot响应压缩功能的配置与优化》SpringBoot的响应压缩功能基于智能协商机制,需同时满足很多条件,本文主要为大家详细介绍了SpringBoot响应压缩功能的配置与优化,需... 目录一、核心工作机制1.1 自动协商触发条件1.2 压缩处理流程二、配置方案详解2.1 基础YAML

springboot简单集成Security配置的教程

《springboot简单集成Security配置的教程》:本文主要介绍springboot简单集成Security配置的教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录集成Security安全框架引入依赖编写配置类WebSecurityConfig(自定义资源权限规则