搞了四天的REID环境配置

2024-01-31 01:32
文章标签 配置 环境 reid 四天

本文主要是介绍搞了四天的REID环境配置,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

我先跟大家说一下我存在的哪几类报错吧

1.c++的依赖环境没安装   (安装c++的依赖环境链接:https://pan.baidu.com/s/1FzIyQ1OpxI7DxNCUwyot2Q 提取码:ux9q )

2.Broken pipe 报错  (把ImageDataManager函数中workers设置为0)

 

3.我在重新安装命令python setup.py develop的时候存在

D:\Study- Place\AI\YOLO\Yolov5_DeepSort_Pytorch\REID\reid-original\deep-person-reid-master\torchreid\metrics\rank_cylib\rank_cy.cp37-win_amd64.pyd 拒绝访问的问题

(你把这个文件删除就可重新安装了)

正文开始

首先到https://github.com/KaiyangZhou/这下载源码

解压完成后就是这样的文件形式

然后cd到文件目录下

 执行这下面这几条命令(并且在其中全点y)

conda create --name torchreid python=3.7
conda activate torchreid
pip install -r requirements.txt
conda install pytorch torchvision cudatoolkit=9.0 -c pytorch  (这条命令你需要在torch官网上查询对应torch版本 (建议使用anaconda下载,我下的是11.3的版本))
python setup.py develop

 

然后显示Finish的字样就是完成了

尝试pip show torchreid看看是否存在问题,显示正常信息那就不存在问题了

这是我文件的目录 reid.py是训练代码

# 模块引入
import torchreid
import torch
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# 加载数据管理器
datamanager = torchreid.data.ImageDataManager(root='reid-data',sources='market1501',targets='market1501',height=256,width=128,batch_size_train=32,batch_size_test=100,transforms=['random_flip', 'random_crop']
)
# 构建模型、优化器和lr_scheduler
model = torchreid.models.build_model(name='resnet50',num_classes=datamanager.num_train_pids,loss='softmax',pretrained=True
)model = model.to(device)
#model = model.cuda()
optimizer = torchreid.optim.build_optimizer(model,optim='adam',lr=0.0003
)scheduler = torchreid.optim.build_lr_scheduler(optimizer,lr_scheduler='single_step',stepsize=20
)
# Build engine
engine = torchreid.engine.ImageSoftmaxEngine(datamanager,model,optimizer=optimizer,scheduler=scheduler,label_smooth=True
)
# 进行培训和测试
engine.run(save_dir='log/resnet50',max_epoch=60,eval_freq=10,print_freq=10,test_only=False
)

数据集我是用的是market1501数据格式是这样的

 数据集market1501在csdn上一查就有

代码教程是在How-to — torchreid 1.4.0 documentation (kaiyangzhou.github.io)上的

 

这篇关于搞了四天的REID环境配置的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/662189

相关文章

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

mybatis映射器配置小结

《mybatis映射器配置小结》本文详解MyBatis映射器配置,重点讲解字段映射的三种解决方案(别名、自动驼峰映射、resultMap),文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定... 目录select中字段的映射问题使用SQL语句中的别名功能使用mapUnderscoreToCame

Linux下MySQL数据库定时备份脚本与Crontab配置教学

《Linux下MySQL数据库定时备份脚本与Crontab配置教学》在生产环境中,数据库是核心资产之一,定期备份数据库可以有效防止意外数据丢失,本文将分享一份MySQL定时备份脚本,并讲解如何通过cr... 目录备份脚本详解脚本功能说明授权与可执行权限使用 Crontab 定时执行编辑 Crontab添加定

Java使用jar命令配置服务器端口的完整指南

《Java使用jar命令配置服务器端口的完整指南》本文将详细介绍如何使用java-jar命令启动应用,并重点讲解如何配置服务器端口,同时提供一个实用的Web工具来简化这一过程,希望对大家有所帮助... 目录1. Java Jar文件简介1.1 什么是Jar文件1.2 创建可执行Jar文件2. 使用java

SpringBoot 多环境开发实战(从配置、管理与控制)

《SpringBoot多环境开发实战(从配置、管理与控制)》本文详解SpringBoot多环境配置,涵盖单文件YAML、多文件模式、MavenProfile分组及激活策略,通过优先级控制灵活切换环境... 目录一、多环境开发基础(单文件 YAML 版)(一)配置原理与优势(二)实操示例二、多环境开发多文件版

Vite 打包目录结构自定义配置小结

《Vite打包目录结构自定义配置小结》在Vite工程开发中,默认打包后的dist目录资源常集中在asset目录下,不利于资源管理,本文基于Rollup配置原理,本文就来介绍一下通过Vite配置自定义... 目录一、实现原理二、具体配置步骤1. 基础配置文件2. 配置说明(1)js 资源分离(2)非 JS 资

使用docker搭建嵌入式Linux开发环境

《使用docker搭建嵌入式Linux开发环境》本文主要介绍了使用docker搭建嵌入式Linux开发环境,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录1、前言2、安装docker3、编写容器管理脚本4、创建容器1、前言在日常开发全志、rk等不同

MySQL8 密码强度评估与配置详解

《MySQL8密码强度评估与配置详解》MySQL8默认启用密码强度插件,实施MEDIUM策略(长度8、含数字/字母/特殊字符),支持动态调整与配置文件设置,推荐使用STRONG策略并定期更新密码以提... 目录一、mysql 8 密码强度评估机制1.核心插件:validate_password2.密码策略级

ShardingProxy读写分离之原理、配置与实践过程

《ShardingProxy读写分离之原理、配置与实践过程》ShardingProxy是ApacheShardingSphere的数据库中间件,通过三层架构实现读写分离,解决高并发场景下数据库性能瓶... 目录一、ShardingProxy技术定位与读写分离核心价值1.1 技术定位1.2 读写分离核心价值二

QT Creator配置Kit的实现示例

《QTCreator配置Kit的实现示例》本文主要介绍了使用Qt5.12.12与VS2022时,因MSVC编译器版本不匹配及WindowsSDK缺失导致配置错误的问题解决,感兴趣的可以了解一下... 目录0、背景:qt5.12.12+vs2022一、症状:二、原因:(可以跳过,直奔后面的解决方法)三、解决方