Pytorch 学习率衰减方法

2024-01-30 19:18
文章标签 学习 方法 pytorch 衰减

本文主要是介绍Pytorch 学习率衰减方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Pytorch 学习率衰减方法

  • 1.什么是学习率衰减
  • 2.使用库函数进行调整
    • 2.1.有序调整
      • 2.1.1等间隔调整学习率
      • 2.1.2.多间隔调整学习率
      • 2.1.3.指数衰减调整学习率 ExponentialLR
      • 2.1.4.余弦退火函数调整学习率
    • 2.2.根据指标调整学习率ReduceLROnPlateau
    • 2.3.自定义调整学习率
  • 3.手动调整学习率

1.什么是学习率衰减

梯度下降算法需要我们指定一个学习率作为权重更新步幅的控制因子,常用的学习率有0.01、0.001以及0.0001等,学习率越大则权重更新。一般来说,我们希望在训练初期学习率大一些,使得网络收敛迅速,在训练后期学习率小一些,使得网络更好的收敛到最优解。
Pytorch中有两种学习率调整(衰减)方法:
(1)使用库函数进行调整;
(2)手动调整。

2.使用库函数进行调整

Pytorch学习率调整策略通过 torch.optim.lr_sheduler 接口实现。pytorch提供的学习率调整策略分为三大类,分别是:
(1)有序调整:等间隔调整(Step),多间隔调整(MultiStep),指数衰减(Exponential),余弦退火(CosineAnnealing);
(2)自适应调整:依训练状况伺机而变,通过监测某个指标的变化情况(loss、accuracy),当该指标不怎么变化时,就是调整学习率的时机(ReduceLROnPlateau);
(3)自定义调整:通过自定义关于epoch的lambda函数调整学习率(LambdaLR)。
在每个epoch的训练中,使用scheduler.step()语句进行学习率更新

optimizer = torch.optim.SGD(model.parameters(), lr=0.1)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=30, gamma=0.1)def train(...):for i, data in enumerate(train_loader):......y_ = model(x)loss = criterion(y_,y)loss.backward()optimizer.step()......for epoch in range(epochs):train(...)test(...)scheduler.step()

2.1.有序调整

2.1.1等间隔调整学习率

torch.optim.lr_scheduler.StepLR(optimizer, step_size, gamma=0.1, last_epoch=-1)

每训练step_size个epoch,学习率调整为lr=lr*gamma.
以下内容中都将epoch和step对等,因为每个epoch中只进行一次scheduler.step(),实则该step指scheduler.step()中的step, 即step_size指scheduler.step()进行的次数。
参数

  • optimizer: 神经网络训练中使用的优化器,如optimizer=torch.optim.SGD(…)
  • step_size(int): 学习率下降间隔数,单位是epoch,而不是iteration.
  • gamma(float):学习率调整倍数,默认为0.1
  • last_epoch(int):上一个epoch数,这个变量用来指示学习率是否需要调整。当last_epoch符合设定的间隔时,就会对学习率进行调整;当为-1时,学习率设置为初始值。

2.1.2.多间隔调整学习率

跟2.1类似,但学习率调整的间隔并不是相等的,如epoch=10时调整一次,epoch=30时调整一次,epoch=80时调整一次…

torch.optim.lr_shceduler.MultiStepLR(optimizer, milestones, gamma=0.1, last_epoch=-1)

参数:

  • milestone(list): 一个列表参数,表示多个学习率需要调整的epoch值,如milestones=[10, 30, 80].
  • 其它参数同(1)。

2.1.3.指数衰减调整学习率 ExponentialLR

学习率呈指数型衰减,每训练一个epoch,lr=lr×γepoch

torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma, last_epoch)

参数:

  • gamma(float):学习率调整倍数的底数,指数为epoch,初始值我lr, 倍数为γepoch
  • 其它参数同上。

2.1.4.余弦退火函数调整学习率

学习率呈余弦函数型衰减,并以2×Tmax为余弦函数周期,epoch=0对应余弦型学习率调整曲线的x=0,ymax=lr,epoch=Tmax对应余弦型学习率调整曲线的x=Π,ymin=etamin处,随着epoch>Tmax,学习率随epoch增加逐渐上升,整个走势同cos(x)。

torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max, eta_min=0, last_epoch=-1)

参数:

  • Tmax(int):学习率下降到最小值时的epoch数,即当epoch=T_max时,学习率下降到余弦函数最小值,当epoch>T_max时,学习率将增大;
  • etamin: 学习率调整的最小值,即epoch=Tmax时,lrmin=etamin, 默认为0.
  • 其它参数同上。

2.2.根据指标调整学习率ReduceLROnPlateau

某指标(loss或accuracy)在最近几个epoch中都没有变化(下降或升高超过给定阈值)时,调整学习率。
如当验证集的loss不再下降是,调整学习率;或监察验证集的accuracy不再升高时,调整学习率。

torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.1,patience=10,verbose=False, threshold=0.0001, threshold_mode='rel', cooldown=0, min_lr=0, eps=1e-08)

参数:

  • mode(str): 模式选择,有min和max两种模式,min表示当指标不再降低(如监测loss),max表示当指标不再升高(如监测accuracy)。
  • factor(float): 学习率调整倍数,同前面的gamma,当监测指标达到要求时,lr=lr×factor。
  • patience(int): 忍受该指标多少个epoch不变化,当忍无可忍时,调整学习率。
  • verbose(bool): 是否打印学习率信息,print( ‘Epoch {:5d} reducing learning rate of group {} to {:.4e}.’.format(epoch, i, new_lr), 默认为False, 即不打印该信息。
  • threshold_mode (str): 选择判断指标是否达最优的模式,有两种模式:rel 和 abs.
    当threshold_mode == rel, 并且 mode == max时,dynamic_threshold = best * (1 + threshold);
    当threshold_mode == rel, 并且 mode == min时,dynamic_threshold = best * (1 - threshold);
    当threshold_mode == abs, 并且 mode == max时,dynamic_threshold = best + threshold;
    当threshold_mode == abs, 并且 mode == min时,dynamic_threshold = best - threshold;
    threshold(float): 配合threshold_mode使用。
  • cooldown(int): “冷却时间”,当调整学习率之后,让学习率调整策略冷静一下,让模型在训练一段时间,再重启监测模式
  • min_lr(float or list): 学习率下限,可为float,或者list,当有多个参数组时,可用list进行设置。
  • eps(float): 学习率衰减的最小值,当学习率的变化值小于eps时,则不调整学习率。

2.3.自定义调整学习率

为不同参数组设定不同学习率调整策略。调整规则为:
lr = base_lr * lambda(self.last_epoch)
在fine-tune中特别有用,我们不仅可以为不同层设置不同的学习率,还可以为不同层设置不同的学习率调整策略。

torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda, last_epoch=-1)

参数:

  • lr_lambda(function or list): 自定义计算学习率调整倍数的函数,通常时epoch的函数,当有多个参数组时,设为list.
  • 其它参数同上。

3.手动调整学习率

手动调整学习率,通常可以定义如下函数:

def adjust_learning_rate(optimizer, epoch):"""Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""lr = args.lr * (0.1 ** (epoch // 30))for param_group in optimizer.param_groups:param_group['lr'] = lr

又如:

def adjust_learning_rate(epoch, lr):if epoch <= 81:  # 32k iterationsreturn lrelif epoch <= 122:  # 48k iterationsreturn lr/10else:return lr/100

该函数通过修改每个epoch下,各参数组中的lr来进行学习率手动调整,用法如下:

for epoch in range(epochs):lr = adjust_learning_rate(optimizer, epoch)  # 调整学习率optimizer = optim.SGD(net.parameters(), lr=lr, momentum=0.9, weight_decay=5e-4)......optimizer.step()  # 采用新的学习率进行参数更新

这篇关于Pytorch 学习率衰减方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/661274

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

浅谈主机加固,六种有效的主机加固方法

在数字化时代,数据的价值不言而喻,但随之而来的安全威胁也日益严峻。从勒索病毒到内部泄露,企业的数据安全面临着前所未有的挑战。为了应对这些挑战,一种全新的主机加固解决方案应运而生。 MCK主机加固解决方案,采用先进的安全容器中间件技术,构建起一套内核级的纵深立体防护体系。这一体系突破了传统安全防护的局限,即使在管理员权限被恶意利用的情况下,也能确保服务器的安全稳定运行。 普适主机加固措施:

webm怎么转换成mp4?这几种方法超多人在用!

webm怎么转换成mp4?WebM作为一种新兴的视频编码格式,近年来逐渐进入大众视野,其背后承载着诸多优势,但同时也伴随着不容忽视的局限性,首要挑战在于其兼容性边界,尽管WebM已广泛适应于众多网站与软件平台,但在特定应用环境或老旧设备上,其兼容难题依旧凸显,为用户体验带来不便,再者,WebM格式的非普适性也体现在编辑流程上,由于它并非行业内的通用标准,编辑过程中可能会遭遇格式不兼容的障碍,导致操

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验