Pytorch 学习率衰减方法

2024-01-30 19:18
文章标签 学习 方法 pytorch 衰减

本文主要是介绍Pytorch 学习率衰减方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Pytorch 学习率衰减方法

  • 1.什么是学习率衰减
  • 2.使用库函数进行调整
    • 2.1.有序调整
      • 2.1.1等间隔调整学习率
      • 2.1.2.多间隔调整学习率
      • 2.1.3.指数衰减调整学习率 ExponentialLR
      • 2.1.4.余弦退火函数调整学习率
    • 2.2.根据指标调整学习率ReduceLROnPlateau
    • 2.3.自定义调整学习率
  • 3.手动调整学习率

1.什么是学习率衰减

梯度下降算法需要我们指定一个学习率作为权重更新步幅的控制因子,常用的学习率有0.01、0.001以及0.0001等,学习率越大则权重更新。一般来说,我们希望在训练初期学习率大一些,使得网络收敛迅速,在训练后期学习率小一些,使得网络更好的收敛到最优解。
Pytorch中有两种学习率调整(衰减)方法:
(1)使用库函数进行调整;
(2)手动调整。

2.使用库函数进行调整

Pytorch学习率调整策略通过 torch.optim.lr_sheduler 接口实现。pytorch提供的学习率调整策略分为三大类,分别是:
(1)有序调整:等间隔调整(Step),多间隔调整(MultiStep),指数衰减(Exponential),余弦退火(CosineAnnealing);
(2)自适应调整:依训练状况伺机而变,通过监测某个指标的变化情况(loss、accuracy),当该指标不怎么变化时,就是调整学习率的时机(ReduceLROnPlateau);
(3)自定义调整:通过自定义关于epoch的lambda函数调整学习率(LambdaLR)。
在每个epoch的训练中,使用scheduler.step()语句进行学习率更新

optimizer = torch.optim.SGD(model.parameters(), lr=0.1)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=30, gamma=0.1)def train(...):for i, data in enumerate(train_loader):......y_ = model(x)loss = criterion(y_,y)loss.backward()optimizer.step()......for epoch in range(epochs):train(...)test(...)scheduler.step()

2.1.有序调整

2.1.1等间隔调整学习率

torch.optim.lr_scheduler.StepLR(optimizer, step_size, gamma=0.1, last_epoch=-1)

每训练step_size个epoch,学习率调整为lr=lr*gamma.
以下内容中都将epoch和step对等,因为每个epoch中只进行一次scheduler.step(),实则该step指scheduler.step()中的step, 即step_size指scheduler.step()进行的次数。
参数

  • optimizer: 神经网络训练中使用的优化器,如optimizer=torch.optim.SGD(…)
  • step_size(int): 学习率下降间隔数,单位是epoch,而不是iteration.
  • gamma(float):学习率调整倍数,默认为0.1
  • last_epoch(int):上一个epoch数,这个变量用来指示学习率是否需要调整。当last_epoch符合设定的间隔时,就会对学习率进行调整;当为-1时,学习率设置为初始值。

2.1.2.多间隔调整学习率

跟2.1类似,但学习率调整的间隔并不是相等的,如epoch=10时调整一次,epoch=30时调整一次,epoch=80时调整一次…

torch.optim.lr_shceduler.MultiStepLR(optimizer, milestones, gamma=0.1, last_epoch=-1)

参数:

  • milestone(list): 一个列表参数,表示多个学习率需要调整的epoch值,如milestones=[10, 30, 80].
  • 其它参数同(1)。

2.1.3.指数衰减调整学习率 ExponentialLR

学习率呈指数型衰减,每训练一个epoch,lr=lr×γepoch

torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma, last_epoch)

参数:

  • gamma(float):学习率调整倍数的底数,指数为epoch,初始值我lr, 倍数为γepoch
  • 其它参数同上。

2.1.4.余弦退火函数调整学习率

学习率呈余弦函数型衰减,并以2×Tmax为余弦函数周期,epoch=0对应余弦型学习率调整曲线的x=0,ymax=lr,epoch=Tmax对应余弦型学习率调整曲线的x=Π,ymin=etamin处,随着epoch>Tmax,学习率随epoch增加逐渐上升,整个走势同cos(x)。

torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max, eta_min=0, last_epoch=-1)

参数:

  • Tmax(int):学习率下降到最小值时的epoch数,即当epoch=T_max时,学习率下降到余弦函数最小值,当epoch>T_max时,学习率将增大;
  • etamin: 学习率调整的最小值,即epoch=Tmax时,lrmin=etamin, 默认为0.
  • 其它参数同上。

2.2.根据指标调整学习率ReduceLROnPlateau

某指标(loss或accuracy)在最近几个epoch中都没有变化(下降或升高超过给定阈值)时,调整学习率。
如当验证集的loss不再下降是,调整学习率;或监察验证集的accuracy不再升高时,调整学习率。

torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.1,patience=10,verbose=False, threshold=0.0001, threshold_mode='rel', cooldown=0, min_lr=0, eps=1e-08)

参数:

  • mode(str): 模式选择,有min和max两种模式,min表示当指标不再降低(如监测loss),max表示当指标不再升高(如监测accuracy)。
  • factor(float): 学习率调整倍数,同前面的gamma,当监测指标达到要求时,lr=lr×factor。
  • patience(int): 忍受该指标多少个epoch不变化,当忍无可忍时,调整学习率。
  • verbose(bool): 是否打印学习率信息,print( ‘Epoch {:5d} reducing learning rate of group {} to {:.4e}.’.format(epoch, i, new_lr), 默认为False, 即不打印该信息。
  • threshold_mode (str): 选择判断指标是否达最优的模式,有两种模式:rel 和 abs.
    当threshold_mode == rel, 并且 mode == max时,dynamic_threshold = best * (1 + threshold);
    当threshold_mode == rel, 并且 mode == min时,dynamic_threshold = best * (1 - threshold);
    当threshold_mode == abs, 并且 mode == max时,dynamic_threshold = best + threshold;
    当threshold_mode == abs, 并且 mode == min时,dynamic_threshold = best - threshold;
    threshold(float): 配合threshold_mode使用。
  • cooldown(int): “冷却时间”,当调整学习率之后,让学习率调整策略冷静一下,让模型在训练一段时间,再重启监测模式
  • min_lr(float or list): 学习率下限,可为float,或者list,当有多个参数组时,可用list进行设置。
  • eps(float): 学习率衰减的最小值,当学习率的变化值小于eps时,则不调整学习率。

2.3.自定义调整学习率

为不同参数组设定不同学习率调整策略。调整规则为:
lr = base_lr * lambda(self.last_epoch)
在fine-tune中特别有用,我们不仅可以为不同层设置不同的学习率,还可以为不同层设置不同的学习率调整策略。

torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda, last_epoch=-1)

参数:

  • lr_lambda(function or list): 自定义计算学习率调整倍数的函数,通常时epoch的函数,当有多个参数组时,设为list.
  • 其它参数同上。

3.手动调整学习率

手动调整学习率,通常可以定义如下函数:

def adjust_learning_rate(optimizer, epoch):"""Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""lr = args.lr * (0.1 ** (epoch // 30))for param_group in optimizer.param_groups:param_group['lr'] = lr

又如:

def adjust_learning_rate(epoch, lr):if epoch <= 81:  # 32k iterationsreturn lrelif epoch <= 122:  # 48k iterationsreturn lr/10else:return lr/100

该函数通过修改每个epoch下,各参数组中的lr来进行学习率手动调整,用法如下:

for epoch in range(epochs):lr = adjust_learning_rate(optimizer, epoch)  # 调整学习率optimizer = optim.SGD(net.parameters(), lr=lr, momentum=0.9, weight_decay=5e-4)......optimizer.step()  # 采用新的学习率进行参数更新

这篇关于Pytorch 学习率衰减方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/661274

相关文章

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

Git中恢复已删除分支的几种方法

《Git中恢复已删除分支的几种方法》:本文主要介绍在Git中恢复已删除分支的几种方法,包括查找提交记录、恢复分支、推送恢复的分支等步骤,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录1. 恢复本地删除的分支场景方法2. 恢复远程删除的分支场景方法3. 恢复未推送的本地删除分支场景方法4. 恢复

Python将大量遥感数据的值缩放指定倍数的方法(推荐)

《Python将大量遥感数据的值缩放指定倍数的方法(推荐)》本文介绍基于Python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处理,并将所得处理后数据保存为新的遥感影像... 本文介绍基于python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处

Window Server2016加入AD域的方法步骤

《WindowServer2016加入AD域的方法步骤》:本文主要介绍WindowServer2016加入AD域的方法步骤,包括配置DNS、检测ping通、更改计算机域、输入账号密码、重启服务... 目录一、 准备条件二、配置ServerB加入ServerA的AD域(test.ly)三、查看加入AD域后的变

Window Server2016 AD域的创建的方法步骤

《WindowServer2016AD域的创建的方法步骤》本文主要介绍了WindowServer2016AD域的创建的方法步骤,文中通过图文介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、准备条件二、在ServerA服务器中常见AD域管理器:三、创建AD域,域地址为“test.ly”

NFS实现多服务器文件的共享的方法步骤

《NFS实现多服务器文件的共享的方法步骤》NFS允许网络中的计算机之间共享资源,客户端可以透明地读写远端NFS服务器上的文件,本文就来介绍一下NFS实现多服务器文件的共享的方法步骤,感兴趣的可以了解一... 目录一、简介二、部署1、准备1、服务端和客户端:安装nfs-utils2、服务端:创建共享目录3、服

Java 字符数组转字符串的常用方法

《Java字符数组转字符串的常用方法》文章总结了在Java中将字符数组转换为字符串的几种常用方法,包括使用String构造函数、String.valueOf()方法、StringBuilder以及A... 目录1. 使用String构造函数1.1 基本转换方法1.2 注意事项2. 使用String.valu

Python中使用defaultdict和Counter的方法

《Python中使用defaultdict和Counter的方法》本文深入探讨了Python中的两个强大工具——defaultdict和Counter,并详细介绍了它们的工作原理、应用场景以及在实际编... 目录引言defaultdict的深入应用什么是defaultdictdefaultdict的工作原理

使用Python进行文件读写操作的基本方法

《使用Python进行文件读写操作的基本方法》今天的内容来介绍Python中进行文件读写操作的方法,这在学习Python时是必不可少的技术点,希望可以帮助到正在学习python的小伙伴,以下是Pyth... 目录一、文件读取:二、文件写入:三、文件追加:四、文件读写的二进制模式:五、使用 json 模块读写

Oracle数据库使用 listagg去重删除重复数据的方法汇总

《Oracle数据库使用listagg去重删除重复数据的方法汇总》文章介绍了在Oracle数据库中使用LISTAGG和XMLAGG函数进行字符串聚合并去重的方法,包括去重聚合、使用XML解析和CLO... 目录案例表第一种:使用wm_concat() + distinct去重聚合第二种:使用listagg,