《Python 简易速速上手小册》第7章:高级 Python 编程(基于最新版 Python3.12 编写)

本文主要是介绍《Python 简易速速上手小册》第7章:高级 Python 编程(基于最新版 Python3.12 编写),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

注意:本《Python 简易速速上手小册》

核心目的在于让零基础新手「快速构建 Python 知识体系」

文章目录

    • <mark >注意:本《Python 简易速速上手小册》
    • <mark >核心目的在于让零基础新手「快速构建 Python 知识体系」
  • 7.1 装饰器和闭包
    • 7.1.1 装饰器(Decorators)
    • 7.1.2 闭包(Closures)
  • 7.2 迭代器和生成器
    • 7.2.1 迭代器(Iterators)
    • 7.2.2 生成器(Generators)
  • 7.3 上下文管理器和 with 语句
    • 7.3.1 上下文管理器(Context Managers)
    • 7.3.2 with 语句

7.1 装饰器和闭包

在 Python 的世界里,装饰器和闭包就像是魔法师的法术,能够在不改变原有代码结构的情况下赋予程序新的力量。让我们一步一步探索这些魔法,并通过一些示例来加深理解。

7.1.1 装饰器(Decorators)

装饰器是一种强大的功能,允许你在不修改原有函数定义的情况下,增加额外的功能。

装饰器是一个函数,它接受一个函数作为参数并返回一个新的函数。你可以使用它来"装饰"其他函数,给这些函数添加额外的功能。

示例:记录函数执行时间的装饰器

import timedef timer_decorator(func):def wrapper(*args, **kwargs):start_time = time.time()result = func(*args, **kwargs)end_time = time.time()print(f"执行 {func.__name__} 耗时: {end_time - start_time} 秒")return resultreturn wrapper@timer_decorator
def example_function():time.sleep(2)example_function()

这个装饰器timer_decorator记录了被装饰函数的执行时间。使用@timer_decorator语法,我们将其应用于example_function

7.1.2 闭包(Closures)

闭包允许你在一个内部函数中,访问其外部函数的作用域。

当一个函数返回另一个定义在其内部的函数时,这个内部函数就称为闭包。闭包可以访问外部函数的局部变量,即使外部函数的执行已经结束。

示例:使用闭包创建计数器

def make_counter():count = 0def counter():nonlocal countcount += 1return countreturn countercounter1 = make_counter()
print(counter1())  # 输出: 1
print(counter1())  # 输出: 2

这个示例中,make_counter函数返回了counter闭包。每次调用counter时,它都会访问并修改make_counter中的count变量。

通过掌握装饰器和闭包,你将能够写出更加强大和灵活的 Python 代码。这些工具不仅提升了代码的重用性,还增加了代码的可读性和维护性。现在,你已经准备好在你的编程工具箱中添加这些魔法工具了!

7.2 迭代器和生成器

在 Python 的世界中,迭代器和生成器是处理数据流的核心工具。它们使得数据处理变得高效而优雅。让我们一起探索这些强大的工具,并通过实际示例来理解它们的用法和优势。

7.2.1 迭代器(Iterators)

迭代器允许我们逐个访问集合中的元素,而不需要一次性将它们全部加载到内存中。

迭代器是实现了__iter__()__next__()方法的对象。__iter__()返回迭代器对象本身,__next__()返回容器中的下一个项目。

示例:自定义迭代器

class CountDown:def __init__(self, start):self.current = startdef __iter__(self):return selfdef __next__(self):if self.current <= 0:raise StopIterationelse:num = self.currentself.current -= 1return num# 使用自定义迭代器
for number in CountDown(5):print(number)

这个示例中,CountDown类是一个迭代器,它从指定的数字开始倒数到零。

7.2.2 生成器(Generators)

生成器是一种特殊的迭代器,它更简洁易用。生成器函数使用yield语句产生一系列的值。

生成器是使用函数而不是类来实现的迭代器。每次yield生成一个值后,函数的状态被冻结,下次调用时从上次离开的地方继续执行。

示例:生成器函数

def fibonacci(n):a, b = 0, 1for _ in range(n):yield aa, b = b, a + b# 使用生成器
for number in fibonacci(5):print(number)

这个示例展示了一个生成器函数fibonacci,它用于产生斐波那契数列。

迭代器和生成器是 Python 编程中不可或缺的工具,特别是在处理大型数据集时。它们的使用不仅节省内存,还使代码更加清晰和优雅。掌握了这些工具,你就能更加自如地在 Python 的数据世界中舞动了!

7.3 上下文管理器和 with 语句

上下文管理器和with语句在 Python 中扮演着重要的角色,尤其是在资源管理和异常处理方面。它们确保了即使在发生错误或异常的情况下,资源也能被适当地清理和释放。让我们深入了解这些概念,并通过实际的示例来探索它们的使用。

7.3.1 上下文管理器(Context Managers)

上下文管理器是一种确保资源得到适当处理的机制,特别是在涉及到文件操作和网络连接时。

上下文管理器是实现了__enter____exit__方法的对象。当进入with语句块时,会调用__enter__方法,当离开时则调用__exit__方法。

示例:创建一个简单的上下文管理器

class ManagedFile:def __init__(self, filename):self.filename = filenamedef __enter__(self):self.file = open(self.filename, 'w')return self.filedef __exit__(self, exc_type, exc_val, exc_tb):if self.file:self.file.close()# 使用自定义的上下文管理器
with ManagedFile('hello.txt') as f:f.write('Hello, World!')

这个例子中,ManagedFile类是一个上下文管理器,它确保文件在使用后被正确关闭。

7.3.2 with 语句

with语句提供了一种优雅的方式来处理资源管理和异常处理,特别是当涉及到需要“清理”的操作时。

with语句可以简化异常处理,同时确保使用的资源如文件和网络连接被适当地关闭。它通常与上下文管理器一起使用。

示例:使用with语句进行文件操作

with open('hello.txt', 'w') as file:file.write('Hello, World!')# 文件在这里已自动关闭

这个示例展示了如何使用with语句来简化文件操作。在离开with块后,文件会自动关闭。

通过运用上下文管理器和with语句,你的 Python 代码不仅会变得更加优雅和安全,还能更好地处理异常和资源管理。这些工具是每个 Python 开发者必须掌握的重要技能。现在,让我们用这些知识来编写更加健壮和优雅的 Python 代码吧!

这篇关于《Python 简易速速上手小册》第7章:高级 Python 编程(基于最新版 Python3.12 编写)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/652539

相关文章

MySQL的JDBC编程详解

《MySQL的JDBC编程详解》:本文主要介绍MySQL的JDBC编程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言一、前置知识1. 引入依赖2. 认识 url二、JDBC 操作流程1. JDBC 的写操作2. JDBC 的读操作总结前言本文介绍了mysq

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

JavaScript中的高级调试方法全攻略指南

《JavaScript中的高级调试方法全攻略指南》什么是高级JavaScript调试技巧,它比console.log有何优势,如何使用断点调试定位问题,通过本文,我们将深入解答这些问题,带您从理论到实... 目录观点与案例结合观点1观点2观点3观点4观点5高级调试技巧详解实战案例断点调试:定位变量错误性能分

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

Python中logging模块用法示例总结

《Python中logging模块用法示例总结》在Python中logging模块是一个强大的日志记录工具,它允许用户将程序运行期间产生的日志信息输出到控制台或者写入到文件中,:本文主要介绍Pyt... 目录前言一. 基本使用1. 五种日志等级2.  设置报告等级3. 自定义格式4. C语言风格的格式化方法

Python实现精确小数计算的完全指南

《Python实现精确小数计算的完全指南》在金融计算、科学实验和工程领域,浮点数精度问题一直是开发者面临的重大挑战,本文将深入解析Python精确小数计算技术体系,感兴趣的小伙伴可以了解一下... 目录引言:小数精度问题的核心挑战一、浮点数精度问题分析1.1 浮点数精度陷阱1.2 浮点数误差来源二、基础解决

使用Python实现Word文档的自动化对比方案

《使用Python实现Word文档的自动化对比方案》我们经常需要比较两个Word文档的版本差异,无论是合同修订、论文修改还是代码文档更新,人工比对不仅效率低下,还容易遗漏关键改动,下面通过一个实际案例... 目录引言一、使用python-docx库解析文档结构二、使用difflib进行差异比对三、高级对比方