python白平衡-Python 有哪些黑魔法?

2024-01-28 03:40
文章标签 python 白平衡 黑魔法

本文主要是介绍python白平衡-Python 有哪些黑魔法?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

/>

还记得吗?去年冬天,在国外 AI 圈有个事情闹得很火:知名论坛 Reddit 上忽然出现一个叫 deepfakes 的大神,借助神经网络实现了人脸替换,让一些好莱坞女星"出演”了 AV。

/>

后来根据这个项目又衍生了一个叫 FakeAPP 的桌面应用,可以让尼古拉斯·凯奇这样的明星随心所欲的"出演”任何电影,当然换成任何人的脸部都可以。我们曾详细分享过这些项目:

景略集智:大意了!居然有人用AI技术制作假AV!?zhuanlan.zhihu.comv2-d824a56fb36db5dd0eb85c5d3cb7f5e8_180x120.jpg景略集智:AI已经决定了,ta就是未来每一届奥斯卡最佳男主。?zhuanlan.zhihu.comv2-b29562aae69cac8238eba5afb9733a9e_180x120.jpg

怎么样,是不是被这种换脸的效果惊到了?其实即便是不借助神经网络,我们用 Python 和一些 Python 库也能实现换脸,只不过替换的是静态图像中的人脸,但凭此也足以显示出 Python 的"神秘力量”。

我们下面就传授一下这门 Python"换脸”大法。

在本文,我们会介绍如何通过一段简短的 Python 脚本(200行)将一张图片中面部特征自动替换为另外一张图片中的面部特征。也就是实现下面这样的效果:

/>

具体过程分为四个步骤:检测面部标志;

旋转、缩放和平移图 2 以适应图 1;

调整图 2 的白平衡以匹配图 1;

将图 2 的特征融合到图 1 中;

本脚本的完整代码地址见文末。

使用dlib提取面部标志

本脚本使用 dlib 的 Python bindings 来提取面部标志:

/>

dlib 实现了 Vahid Kazemi 和 Josephine Sullivan 所著论文《One Millisecond Face Alignment with an Ensemble of Regression Tree》一文中描述的算法。算法本身非常复杂,但是通过 dlib的接口实现它非常简单:

PREDICTOR_PATH = "/home/matt/dlib-18.16/shape_predictor_68_face_landmarks.dat"

detector = dlib.get_frontal_face_detector()

predictor = dlib.shape_predictor(PREDICTOR_PATH)

def get_landmarks(im):

rects = detector(im, 1)

if len(rects) > 1:

raise TooManyFaces

if len(rects) == 0:

raise NoFaces

return numpy.matrix([[p.x, p.y] for p in predictor(im, rects[0]).parts()])

get_landmarks() 函数 以 numpy 数组的形式接收图像,并返回一个 68x2 的元素矩阵。矩阵的每一行与输入图像中特定特征点的 x,y 坐标相对应。

特征提取器(predictor)需要一个大概的边界框作为算法的输入。这将由传统的面部检测器(detector)提供。该面部检测器会返回一个矩形列表,其中每一个矩形与图像中的一张人脸相对应。

生成 predictor 需要预先训练好的模型。该模型可在 dlib sourceforge repository 下载。

用普氏分析法(Procrustes Analysis)实现人脸对齐

现在我们已经有两个面部标志矩阵,其中的每一行都含有某个面部特征的坐标(如第 30 行给出了鼻尖的坐标)。我们现在只要弄明白如何旋转、平移和缩放第一个向量的所有点,使其尽可能匹配第二个向量中的点。同理,同样的变换可用于将第二张图叠加在第一张图上。

为使其更加数学化,我们设 T,s 和 R,并求如下等式最小值: />

其中,R 是一个 2x2 的正交矩阵,s 是一个标量,T 是一个二维向量,pi 和 qi 是之前计算出的面部标志矩阵行标和列标。

事实证明,这类问题用常规普氏分析法(Ordinary Procrustes Analysis)可以解决:

def transformation_from_points(points1, points2):

points1 = points1.astype(numpy.float64)

points2 = points2.astype(numpy.float64)

c1 = numpy.mean(points1, axis=0)

c2 = numpy.mean(points2, axis=0)

points1 -= c1

points2 -= c2

s1 = numpy.std(points1)

s2 = numpy.std(points2)

points1 /= s1

points2 /= s2

U, S, Vt = numpy.linalg.svd(points1.T * points2)

R = (U * Vt).T

return numpy.vstack([numpy.hstack(((s2 / s1) * R,

c2.T - (s2 / s1) * R * c1.T)),

numpy.matrix([0., 0., 1.])])

我们逐步分析一下代码:将输入矩阵转换为浮点型。这也是后续步骤的必要条件。

将每一个点集减去它的矩心。一旦为这两个新的点集找到了一个最佳的缩放和旋转方法,这两个矩心c1和c2就可以用来找到完整的解决方案。

同样,将每一个点集除以它的标准偏差。这消除了缩放偏差。

使用奇异值分解(singular value decomposition)计算旋转部分。请参阅维基百科有关Orthogonal Procrustes Problem的文章,以了解它的具体工作原理。

将整个变换过程以仿射变换矩阵形式返回。

之后,返回结果可以插入 OpenCV 的 cv2.warpAffine 函数,将第二个图片映射到第一个图片上:

def warp_im(im, M, dshape):

output_im = numpy.zeros(dshape, dtype=im.dtype)

cv2.warpAffine(im,

M[:2],

(dshape[1], dshape[0]),

dst=output_im,

borderMode=cv2.BORDER_TRANSPARENT,

flags=cv2.WARP_INVERSE_MAP)

return output_im

校正第二张图片的颜色

如果此时我们试图直接叠加面部特征,很快会发现一个问题:

/>这样肯定是没法儿看的... />

两幅图像之间不同的肤色和光线造成了覆盖区域边缘的不连续。所以我们尝试修正它:

COLOUR_CORRECT_BLUR_FRAC = 0.6

LEFT_EYE_POINTS = list(range(42, 48))

RIGHT_EYE_POINTS = list(range(36, 42))

def correct_colours(im1, im2, landmarks1):

blur_amount = COLOUR_CORRECT_BLUR_FRAC * numpy.linalg.norm(

numpy.mean(landmarks1[LEFT_EYE_POINTS], axis=0) -

numpy.mean(landmarks1[RIGHT_EYE_POINTS], axis=0))

blur_amount = int(blur_amount)

if blur_amount % 2 == 0:

blur_amount += 1

im1_blur = cv2.GaussianBlur(im1, (blur_amount, blur_amount), 0)

im2_blur = cv2.GaussianBlur(im2, (blur_amount, blur_amount), 0)

# Avoid divide-by-zero errors.

im2_blur += 128 * (im2_blur <= 1.0)

return (im2.astype(numpy.float64) * im1_blur.astype(numpy.float64) /

im2_blur.astype(numpy.float64))

现在效果怎么样?我们瞅瞅:

/>这不是更奇怪了么... />

此函数试图改变图 2 的颜色来匹配图 1,也就是用 im2 除以 im2 的高斯模糊,然后乘以 im1 的高斯模糊。在这里我们使用了颜色平衡( RGB scaling colour-correction),但不是直接使用全图的常数比例因子,而是采用每个像素的局部比例因子。

通过这种方法也只能在某种程度上修正两图间的光线差异。比如说,如果图 1 的光线来自某一边,但图 2 的光线非常均匀,校色后图 2 也会出现有一边暗一些的情况。

也就是说,这是一个相当粗糙的解决方案,而且关键在于大小适当的高斯内核。如果太小,图 2 中会出现图 1 的面部特征。如果太大,内核会跑到被像素覆盖的面部区域之外,并变色。这里的内核大小为瞳距的 0.6 倍。

将图 2 的特征融合到图 1 中

用一个蒙版(mask)来选择图 2 和图 1 应被最终显示的部分:

/>

值为 1 (白色)的地方为图 2 应显示的区域,值为 0 (黑色)的地方为图 1 应显示的区域。值在 0 和 1 之间的地方为图 1 图 2 的混合区域。

这是生成上述内容的代码:

LEFT_EYE_POINTS = list(range(42, 48))

RIGHT_EYE_POINTS = list(range(36, 42))

LEFT_BROW_POINTS = list(range(22, 27))

RIGHT_BROW_POINTS = list(range(17, 22))

NOSE_POINTS = list(range(27, 35))

MOUTH_POINTS = list(range(48, 61))

OVERLAY_POINTS = [

LEFT_EYE_POINTS + RIGHT_EYE_POINTS + LEFT_BROW_POINTS + RIGHT_BROW_POINTS,

NOSE_POINTS + MOUTH_POINTS,

]

FEATHER_AMOUNT = 11

def draw_convex_hull(im, points, color):

points = cv2.convexHull(points)

cv2.fillConvexPoly(im, points, color=color)

def get_face_mask(im, landmarks):

im = numpy.zeros(im.shape[:2], dtype=numpy.float64)

for group in OVERLAY_POINTS:

draw_convex_hull(im,

landmarks[group],

color=1)

im = numpy.array([im, im, im]).transpose((1, 2, 0))

im = (cv2.GaussianBlur(im, (FEATHER_AMOUNT, FEATHER_AMOUNT), 0) > 0) * 1.0

im = cv2.GaussianBlur(im, (FEATHER_AMOUNT, FEATHER_AMOUNT), 0)

return im

mask = get_face_mask(im2, landmarks2)

warped_mask = warp_im(mask, M, im1.shape)

combined_mask = numpy.max([get_face_mask(im1, landmarks1), warped_mask],

axis=0)

我们来分析一下:常规的 get_face_mask() 函数定义是:为一张图像和一个标志矩阵生成一个蒙版。蒙版会画出两个白色的凸多边形:一个是眼睛周围的区域,一个是鼻子和嘴部周围的区域。之后,蒙版的边缘区域向外羽化 11 个像素,这可以帮助消除剩下的不连续部分。

为图 1 图 2 生成面部蒙版。使用与步骤 2 中的转换,可以使图 2 的蒙版转换至图 1 的坐标空间。

之后,对所有元素取最大值操作,将这两个蒙版合二为一。这样做是为了保证图 1 的特征也能被覆盖的同时图 2 特征能显示出来。

最后,将蒙版应用于最终图像:

output_im = im1 * (1.0 - combined_mask) + warped_corrected_im2 * combined_mask

/>哈,换脸成功! />

附:本项目代码地址:

这篇关于python白平衡-Python 有哪些黑魔法?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/652368

相关文章

Python调用Orator ORM进行数据库操作

《Python调用OratorORM进行数据库操作》OratorORM是一个功能丰富且灵活的PythonORM库,旨在简化数据库操作,它支持多种数据库并提供了简洁且直观的API,下面我们就... 目录Orator ORM 主要特点安装使用示例总结Orator ORM 是一个功能丰富且灵活的 python O

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

Python Jupyter Notebook导包报错问题及解决

《PythonJupyterNotebook导包报错问题及解决》在conda环境中安装包后,JupyterNotebook导入时出现ImportError,可能是由于包版本不对应或版本太高,解决方... 目录问题解决方法重新安装Jupyter NoteBook 更改Kernel总结问题在conda上安装了

Python如何计算两个不同类型列表的相似度

《Python如何计算两个不同类型列表的相似度》在编程中,经常需要比较两个列表的相似度,尤其是当这两个列表包含不同类型的元素时,下面小编就来讲讲如何使用Python计算两个不同类型列表的相似度吧... 目录摘要引言数字类型相似度欧几里得距离曼哈顿距离字符串类型相似度Levenshtein距离Jaccard相

Python安装时常见报错以及解决方案

《Python安装时常见报错以及解决方案》:本文主要介绍在安装Python、配置环境变量、使用pip以及运行Python脚本时常见的错误及其解决方案,文中介绍的非常详细,需要的朋友可以参考下... 目录一、安装 python 时常见报错及解决方案(一)安装包下载失败(二)权限不足二、配置环境变量时常见报错及

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(