Flink 双流Join

2024-01-26 22:30
文章标签 join 双流 flink

本文主要是介绍Flink 双流Join,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

支持的join类型

      Apache Flink目前支持INNER JOIN和LEFT OUTER JOIN(SELF 可以转换为普通的INNER和OUTER)。在语义上面Apache Flink严格遵守标准SQL的语义

 CROSSINNEROUTERSELFONWHERE
Apache FlinkNYYY必选可选

      双流Join的分类:

  1. Join大体分类只有两种:Window Join和Interval Join。Window Join又可以根据Window的类型细分出3种:
    1. Tumbling Window Join、Sliding Window Join、Session Widnow Join。
  2. Windows类型的join都是利用window的机制,先将数据缓存在Window State中,当窗口触发计算时,执行join操作;
  3. interval join也是利用state存储数据再处理,区别在于state中的数据有失效机制,依靠数据触发数据清理;

双流JOIN操作注意事项

         想要实现流的join我们要考虑数据的延迟,也就是不同流数据到达算子时间不一致的问题。这时候需要用到flink的水印,窗口,EventTime等概念,同时 flink提供了两种流join的算子,Join和coGroup。具体区别参考上篇博客:https://blog.csdn.net/aA518189/article/details/84032660,这篇博客中详细介绍了Join和coGroup的区别,以实现双流Join的案例。

双流JOIN与传统数据库表JOIN的区别

         传统数据库表的JOIN是两张静态表的数据联接,在流上面是动态表,双流JOIN的数据不断流入与传统数据库表的JOIN有如下3个核心区别:

  1. 左右两边的数据集合无穷 - 传统数据库左右两个表的数据集合是有限的,双流JOIN的数据会源源不断的流入。
  2. JOIN的结果不断产生/更新 - 传统数据库表JOIN是一次执行产生最终结果后退出,双流JOIN会持续不断的产生新的结果。
  3. 查询计算的双边驱动 - 双流JOIN由于左右两边的流的速度不一样,会导致左边数据到来的时候右边数据还没有到来,或者右边数据到来的时候左边数据没有到来,所以在实现中要将左右两边的流数据进行保存,以保证JOIN的语义。

数据Shuffle

         分布式流计算所有数据会进行Shuffle,怎么才能保障左右两边流的要JOIN的数据会在相同的节点进行处理呢?在双流JOIN的场景,我们会利用JOIN中ON的联接key进行partition,确保两个流相同的联接key会在同一个节点处理,这个在flink的源码中有说明。

数据的保存

不论是INNER JOIN还是OUTER JOIN 都需要对左右两边的流的数据进行保存,JOIN算子会开辟左右两个State进行数据存储,左右两边的数据到来时候,进行如下操作:

  1. LeftEvent到来存储到LState,RightEvent到来的时候存储到RState;
  2. LeftEvent会去RightState进行JOIN,并发出所有JOIN之后的Event到下游;
  3. RightEvent会去LeftState进行JOIN,并发出所有JOIN之后的Event到下游。

简单场景介绍实现原理 

INNER JOIN 实现

JOIN有很多复杂的场景,我们先以最简单的场景进行实现原理的介绍,比如:最直接的两个进行INNER JOIN,比如查询产品库存和订单数量,库存变化事件流和订单事件流进行INNER JOIN,JION条件是产品ID,具体如下:

双流JOIN两边事件都会存储到State里面,如上,事件流按照标号先后流入到join节点,我们假设右边流比较快,先流入了3个事件,3个事件会存储到state中,但因为左边还没有数据,所有右边前3个事件流入时候,没有join结果流出,当左边第一个事件序号为4的流入时候,先存储左边state,再与右边已经流入的3个事件进行join,join的结果如图 三行结果会流入到下游节点sink。当第5号事件流入时候,也会和左边第4号事件进行join,流出一条jion结果到下游节点。这里关于INNER JOIN的语义和大家强调两点:

  • INNER JOIN只有符合JOIN条件时候才会有JOIN结果流出到下游,比如右边最先来的1,2,3个事件,流入时候没有任何输出,因为左边还没有可以JOIN的事件;
  • INNER JOIN两边的数据不论如何乱序,都能够保证和传统数据库语义一致,因为我们保存了左右两个流的所有事件到state中。

LEFT OUTER JOIN 实现

LEFT OUTER JOIN 可以简写 LEFT JOIN,语义上和INNER JOIN的区别是不论右流是否有JOIN的事件,左流的事件都需要流入下游节点,但右流没有可以JION的事件时候,右边的事件补NULL。同样我们以最简单的场景说明LEFT JOIN的实现,比如查询产品库存和订单数量,库存变化事件流和订单事件流进行LEFT JOIN,JION条件是产品ID,具体如下:

下图也是表达LEFT JOIN的语义,只是展现方式不同:

上图主要关注点是当左边先流入1,2事件时候,右边没有可以join的事件时候会向下游发送左边事件并补NULL向下游发出,当右边第一个相同的Join key到来的时候会将左边先来的事件发出的带有NULL的事件撤回(对应上面command的-记录,+代表正向记录,-代表撤回记录)。这里强调三点:

  • 左流的事件当右边没有JOIN的事件时候,将右边事件列补NULL后流向下游;* 当右边事件流入发现左边已经有可以JOIN的key的时候,并且是第一个可以JOIN上的右边事件(比如上面的3事件是第一个可以和左边JOIN key P001进行JOIN的事件)需要撤回左边下发的NULL记录,并下发JOIN完整(带有右边事件列)的事件到下游。后续来的4,5,6,8等待后续P001的事件是不会产生撤回记录的。
  • 在Apache Flink系统内部事件类型分为正向事件标记为“+”和撤回事件标记为“-”。

RIGHT OUTER JOIN  和 FULL OUTER JOIN

RIGHT JOIN内部实现与LEFT JOIN类似, FULL JOIN和LEFT JOIN的区别是左右两边都会产生补NULL和撤回的操作。对于State的使用都是相似的,这里不再重复说明了。

这篇关于Flink 双流Join的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/648252

相关文章

Flink任务重启策略

概述 Flink支持不同的重启策略,以在故障发生时控制作业如何重启集群在启动时会伴随一个默认的重启策略,在没有定义具体重启策略时会使用该默认策略。如果在工作提交时指定了一个重启策略,该策略会覆盖集群的默认策略默认的重启策略可以通过 Flink 的配置文件 flink-conf.yaml 指定。配置参数 restart-strategy 定义了哪个策略被使用。常用的重启策略: 固定间隔 (Fixe

MySQL学习笔记-join语句类型

join从句的类型:内链接(inner) 全外连接(full outer) 左外连接(left outer) 右外连接(right outer) 交叉链接(cross) 连接条件:使用ON设定连接条件,也可以用WHERE代替 · ON:设定连接条件 · WHERE:进行结果集记录的过滤 一,内连接inner join:  内连接是返回左表及右表符合连接条件的记录,在MySQL中JO

大数据之Flink(二)

4、部署模式 flink部署模式: 会话模式(Session Mode)单作业模式(Per-Job Mode)应用模式(Application Mode) 区别在于集群的生命周期以及资源的分配方式;以及应用的main方法到底在哪里执行。 4.1、会话模式 先启动一个集群,保持一个会话,在这个会话中通过客户端提交作业。集群启动时资源已经确定,所有提交的作业会晶振集群中的资源。适合规模小、执

多线程 | join方法

文章目录 1. 作用2. 用法3. 异常4. 源码为什么使用wait方法 5. 如何实现按照指定顺序执行线程6. 线程运行状态 1. 作用 在 Java 多线程中,join方法用于等待一个线程执行完毕。当一个线程调用另一个线程的join方法时,当前线程会进入等待状态,直到被调用的线程执行完毕。这使得开发者可以控制线程的执行顺序,确保某些关键线程在其他线程之前完成执行。 2. 用

SylixOS pthread_join退出

1 问题描述 在移植中间件过程中,在SylixOS下调用pthread_join时,如果线程在pthread_join等待之前结束,则线程返回无效线程错误值。在Linux下这种调用会正常返回。两种实现是有差别的,实现的原理分别如下。 2 函数实现机制 2.1 实现机制 在SylixOS下调用pthread_join时,如果线程在pthread_join等待之前结束,线程返回无效线程错误标志

是谁还不会flink的checkpoint呀~

1、State Vs Checkpoint State:状态,是Flink中某一个Operator在某一个时刻的状态,如maxBy/sum,注意State存的是历史数据/状态,存在内存中。 Checkpoint:快照点, 是Flink中所有有状态的Operator在某一个时刻的State快照信息/存档信息 一句话概括: Checkpoint就是State的快照 目的:假设作业停止了,下次启动的

多表连接的三种方式hash join,merge join,nested loop

多表之间的连接有三种方式:Nested Loops,Hash Join和 Sort Merge Join. 下面来介绍三种不同连接的不同:     一. NESTED LOOP: 对于被连接的数据子集较小的情况,嵌套循环连接是个较好的选择。在嵌套循环中,内表被外表驱动,外表返回的每一行都要在内表中检索找到与它匹配的行,因此整个查询返回的结果集不能太大(大于1 万不适合),要把返回

Flink读取kafka数据并以parquet格式写入HDFS

《2021年最新版大数据面试题全面开启更新》 《2021年最新版大数据面试题全面开启更新》 大数据业务场景中,经常有一种场景:外部数据发送到kafka中,flink作为中间件消费kafka数据并进行业务处理;处理完成之后的数据可能还需要写入到数据库或者文件系统中,比如写入hdfs中; 目前基于spark进行计算比较主流,需要读取hdfs上的数据,可以通过读取parquet:spark.read

Apache-Flink深度解析-State

来源:https://dwz.cn/xrMCqbk5 Flink系列精华文章合集入门篇: Flink入门Flink DataSet&DataSteam APIFlink集群部署Flink重启策略Flink分布式缓存Flink重启策略Flink中的TimeFlink中的窗口Flink的时间戳和水印Flink广播变量Flink-Kafka-connetorFlink-Table&SQLFlink

Apache-Flink深度解析-Temporal-Table-JOIN

在《JOIN LATERAL》中提到了Temporal Table JOIN,本篇就向大家详细介绍什么是Temporal Table JOIN。在ANSI-SQL 2011 中提出了Temporal 的概念,Oracle,SQLServer,DB2等大的数据库厂商也先后实现了这个标准。Temporal Table记录了历史上任何时间点所有的数据改动,Temporal Table的工作流程如下: