本文主要是介绍PREV-33 兰顿蚂蚁 (DFS),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
问题描述
兰顿蚂蚁,是于1986年,由克里斯·兰顿提出来的,属于细胞自动机的一种。
平面上的正方形格子被填上黑色或白色。在其中一格正方形内有一只“蚂蚁”。
蚂蚁的头部朝向为:上下左右其中一方。
蚂蚁的移动规则十分简单:
若蚂蚁在黑格,右转90度,将该格改为白格,并向前移一格;
若蚂蚁在白格,左转90度,将该格改为黑格,并向前移一格。
规则虽然简单,蚂蚁的行为却十分复杂。刚刚开始时留下的路线都会有接近对称,像是会重复,但不论起始状态如何,蚂蚁经过漫长的混乱活动后,会开辟出一条规则的“高速公路”。
蚂蚁的路线是很难事先预测的。
你的任务是根据初始状态,用计算机模拟兰顿蚂蚁在第n步行走后所处的位置。
输入格式
输入数据的第一行是 m n 两个整数(3 < m, n < 100),表示正方形格子的行数和列数。
接下来是 m 行数据。
每行数据为 n 个被空格分开的数字。0 表示白格,1 表示黑格。
接下来是一行数据:x y s k, 其中x y为整数,表示蚂蚁所在行号和列号(行号从上到下增长,列号从左到右增长,都是从0开始编号)。s 是一个大写字母,表示蚂蚁头的朝向,我们约定:上下左右分别用:UDLR表示。k 表示蚂蚁走的步数。
接下来是 m 行数据。
每行数据为 n 个被空格分开的数字。0 表示白格,1 表示黑格。
接下来是一行数据:x y s k, 其中x y为整数,表示蚂蚁所在行号和列号(行号从上到下增长,列号从左到右增长,都是从0开始编号)。s 是一个大写字母,表示蚂蚁头的朝向,我们约定:上下左右分别用:UDLR表示。k 表示蚂蚁走的步数。
输出格式
输出数据为两个空格分开的整数 p q, 分别表示蚂蚁在k步后,所处格子的行号和列号。
样例输入
5 6
0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
2 3 L 5
0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
2 3 L 5
样例输出
1 3
样例输入
3 3
0 0 0
1 1 1
1 1 1
1 1 U 6
0 0 0
1 1 1
1 1 1
1 1 U 6
样例输出
0 0
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <queue>
#define mem(p,k) memset(p,k,sizeof(p));
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define inf 0x6fffffff
#define LL long long
using namespace std;
int mapp[110][110],n,m;
int next[4][2]={-1,0,0,1,1,0,0,-1};
void dfs(int x,int y,int cur,int k){if(!k){cout<<x<<' '<<y<<endl;return;}if(mapp[x][y]){cur=(cur+1)%4;}else{cur=(cur-1+4)%4;}mapp[x][y]^=1;x+=next[cur][0];y+=next[cur][1];dfs(x,y,cur,k-1);
}
int main()
{while(cin>>n>>m){int x,y,k,cur;char s;for(int i=0;i<n;i++){for(int j=0;j<m;j++){scanf("%d",mapp[i]+j);}}scanf("%d %d %c %d",&x,&y,&s,&k);switch(s){case 'U':cur=0;break;case 'R':cur=1;break;case 'D':cur=2;break;case 'L':cur=3;break;}dfs(x,y,cur,k);}return 0;
}
这篇关于PREV-33 兰顿蚂蚁 (DFS)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!