传统词嵌入方法的千层套路

2024-01-26 11:20

本文主要是介绍传统词嵌入方法的千层套路,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

诸神缄默不语-个人CSDN博文目录

在自然语言处理(NLP)领域,词嵌入是一种将词语转换为数值形式的方法,使计算机能够理解和处理语言数据。
词嵌入word embedding也叫文本向量化/文本表征。
本文将介绍几种流行的传统词嵌入方法。

文章目录

  • 0. 独热编码
  • 1. 词袋模型
  • 2. TF-IDF
  • 3. word2vec
    • 1. skip-gram
    • 2. CBOW
  • 4. LSA
  • 5. GloVe
  • 6. CoVe

0. 独热编码

one-hot encoding

将每个词表示为一维向量
在这里插入图片描述

1. 词袋模型

bag of word (BoW)

词袋模型是最简单的文本表示法之一。它将文本转换为一个长向量,这个向量的每一个元素代表词汇表中的一个词,并记录该词在文本中出现的次数。

在这里插入图片描述

  • 优点:简单易懂,易于实现。
  • 缺点:忽略了词语的顺序和上下文信息,无法捕捉词与词之间的关系。

sklearn的实现:

from sklearn.feature_extraction.text import CountVectorizercorpus  #由字符串组成的列表
vector = CountVectorizer().fit(corpus)
train_vector = vector.transform(corpus)

2. TF-IDF

term frequency-inverse document frequency

TF-IDF是一种用于信息检索和文本挖掘的常用加权技术。它评估一个词对于一个文档集或一个语料库中的其中一份文档的重要程度。

TF (Term Frequency)中文含义是词频,IDF (Inverse Document Frequency)中文含义是逆文本频率指数。

TF统计的是词语在特定文档中出现的频率,而IDF统计的是词语在其他文章中出现的频率,其处理基本逻辑是词语的重要性随着其在特定文档中出现的次数呈现递增趋势,但同时会随着其在语料库中其他文档中出现的频率递减下降(考虑到有些常用词在所有文档里面都很常见)。
数学表达式如下:
TF-IDF ( w , d ) = TF ( w , d ) × IDF ( w ) \text{TF-IDF}(w,d)=\text{TF}(w,d)\times \text{IDF}(w) TF-IDF(w,d)=TF(w,d)×IDF(w)

  • 优点:能够减少常见词的影响,突出重要词汇。
  • 缺点:与BoW一样,忽略了词序和上下文信息。

sklearn的实现:

from sklearn.feature_extraction.text import TfidfVectorizertfidf=TfidfVectorizer(max_features=500)
corpus  #由字符串组成的列表
sp_tfidf=tfidf.fit_transform(corpus)  #返回稀疏矩阵,每一行是语料中对应文档的表示向量

3. word2vec

Word2Vec是一种预测模型,用于产生词嵌入。它有两种结构:连续词袋(CBOW)和跳字模型(Skip-Gram)。

  • 优点:能够捕捉一定程度的词序和上下文信息。
  • 缺点:对于每个词仅有一个嵌入表示,忽略了多义性。

原始论文:
Distributed Representations of Sentences and Documents:提出word2vec框架
Efficient Estimation of Word Representations in Vector Space:介绍训练trick:hierarchical softmax 和 negative sampling

1. skip-gram

用一个词语作为输入,来预测它周围的上下文

训练思路:用独热编码表示词语。输入这个词语的独热编码,转换为隐藏层编码,输出上下文的独热编码
在这里插入图片描述

2. CBOW

Continues Bag of Words

拿一个词语的上下文作为输入,来预测这个词语本身

在这里插入图片描述

4. LSA

LSA使用奇异值分解(SVD)技术来减少特征空间的维数,并捕捉词之间的隐含关系。

  • 优点:能够改善稀疏性问题,捕捉词义关系。
  • 缺点:计算复杂,难以处理非常大的语料库。

5. GloVe

GloVe结合了矩阵分解和局部上下文窗口的优点。它通过词与词共现的概率信息来生成词向量。

  • 优点:在全局语料统计和局部上下文信息之间找到了平衡。
  • 缺点:需要大量的语料数据来有效训练。

6. CoVe

原论文:(2017) Learned in Translation: Contextualized Word Vectors

早期LM的感觉

CoVe是一种基于上下文的词嵌入方法,它利用序列到序列的模型从大量翻译数据中学习词向量。

  • 优点:能够捕捉上下文中的词义变化,处理多义性问题。
  • 缺点:模型较为复杂,需要大量的训练数据和计算资源。

在这里插入图片描述
Cove: 从Word2Vec/Glove的启示 - 知乎


以上就是几种传统的词嵌入方法的简介。每种方法都有其独特之处,选择适合的词嵌入技术可以极大地提升自然语言处理任务的性能。希望这篇文章能帮助你更好地理解不同的词嵌入方法,为你的NLP项目选择合适的技术。

参考资料:

  1. 文本向量化的六种常见模式
  2. 还没看完:
    1. [NLP] 秒懂词向量Word2vec的本质 - 知乎(整理到“我举个例子,假设全世界所有的词语总共有 V 个,这 V 个词语有自己的先后顺序,假设『吴彦”这一行)
    2. 全面理解word2vec
    3. word2vec简介
    4. 词向量学习算法 Glove - 简书
    5. A Neural Probabilistic Language Model
    6. NLP方向Word2vec算法面试题6道|含解析
    7. (2011 PMLR) Deep Learning for Efficient Discriminative Parsing
    8. 深度学习word2vec笔记之基础篇-CSDN博客
    9. word2vec Explained: deriving Mikolov et al.'s negative-sampling word-embedding method
    10. word2vec Parameter Learning Explained
    11. word2vec 相比之前的 Word Embedding 方法好在什么地方? - 知乎
    12. (2016 国科大博士论文) 基于神经网络的词和文档语义向量表示方法研究
    13. On word embeddings - Part 2: Approximating the Softmax

这篇关于传统词嵌入方法的千层套路的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/646636

相关文章

Linux换行符的使用方法详解

《Linux换行符的使用方法详解》本文介绍了Linux中常用的换行符LF及其在文件中的表示,展示了如何使用sed命令替换换行符,并列举了与换行符处理相关的Linux命令,通过代码讲解的非常详细,需要的... 目录简介检测文件中的换行符使用 cat -A 查看换行符使用 od -c 检查字符换行符格式转换将

SpringBoot实现数据库读写分离的3种方法小结

《SpringBoot实现数据库读写分离的3种方法小结》为了提高系统的读写性能和可用性,读写分离是一种经典的数据库架构模式,在SpringBoot应用中,有多种方式可以实现数据库读写分离,本文将介绍三... 目录一、数据库读写分离概述二、方案一:基于AbstractRoutingDataSource实现动态

Java中的String.valueOf()和toString()方法区别小结

《Java中的String.valueOf()和toString()方法区别小结》字符串操作是开发者日常编程任务中不可或缺的一部分,转换为字符串是一种常见需求,其中最常见的就是String.value... 目录String.valueOf()方法方法定义方法实现使用示例使用场景toString()方法方法

Java中List的contains()方法的使用小结

《Java中List的contains()方法的使用小结》List的contains()方法用于检查列表中是否包含指定的元素,借助equals()方法进行判断,下面就来介绍Java中List的c... 目录详细展开1. 方法签名2. 工作原理3. 使用示例4. 注意事项总结结论:List 的 contain

macOS无效Launchpad图标轻松删除的4 种实用方法

《macOS无效Launchpad图标轻松删除的4种实用方法》mac中不在appstore上下载的应用经常在删除后它的图标还残留在launchpad中,并且长按图标也不会出现删除符号,下面解决这个问... 在 MACOS 上,Launchpad(也就是「启动台」)是一个便捷的 App 启动工具。但有时候,应

SpringBoot日志配置SLF4J和Logback的方法实现

《SpringBoot日志配置SLF4J和Logback的方法实现》日志记录是不可或缺的一部分,本文主要介绍了SpringBoot日志配置SLF4J和Logback的方法实现,文中通过示例代码介绍的非... 目录一、前言二、案例一:初识日志三、案例二:使用Lombok输出日志四、案例三:配置Logback一

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

mysql出现ERROR 2003 (HY000): Can‘t connect to MySQL server on ‘localhost‘ (10061)的解决方法

《mysql出现ERROR2003(HY000):Can‘tconnecttoMySQLserveron‘localhost‘(10061)的解决方法》本文主要介绍了mysql出现... 目录前言:第一步:第二步:第三步:总结:前言:当你想通过命令窗口想打开mysql时候发现提http://www.cpp

Mysql删除几亿条数据表中的部分数据的方法实现

《Mysql删除几亿条数据表中的部分数据的方法实现》在MySQL中删除一个大表中的数据时,需要特别注意操作的性能和对系统的影响,本文主要介绍了Mysql删除几亿条数据表中的部分数据的方法实现,具有一定... 目录1、需求2、方案1. 使用 DELETE 语句分批删除2. 使用 INPLACE ALTER T

MySQL INSERT语句实现当记录不存在时插入的几种方法

《MySQLINSERT语句实现当记录不存在时插入的几种方法》MySQL的INSERT语句是用于向数据库表中插入新记录的关键命令,下面:本文主要介绍MySQLINSERT语句实现当记录不存在时... 目录使用 INSERT IGNORE使用 ON DUPLICATE KEY UPDATE使用 REPLACE