传统词嵌入方法的千层套路

2024-01-26 11:20

本文主要是介绍传统词嵌入方法的千层套路,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

诸神缄默不语-个人CSDN博文目录

在自然语言处理(NLP)领域,词嵌入是一种将词语转换为数值形式的方法,使计算机能够理解和处理语言数据。
词嵌入word embedding也叫文本向量化/文本表征。
本文将介绍几种流行的传统词嵌入方法。

文章目录

  • 0. 独热编码
  • 1. 词袋模型
  • 2. TF-IDF
  • 3. word2vec
    • 1. skip-gram
    • 2. CBOW
  • 4. LSA
  • 5. GloVe
  • 6. CoVe

0. 独热编码

one-hot encoding

将每个词表示为一维向量
在这里插入图片描述

1. 词袋模型

bag of word (BoW)

词袋模型是最简单的文本表示法之一。它将文本转换为一个长向量,这个向量的每一个元素代表词汇表中的一个词,并记录该词在文本中出现的次数。

在这里插入图片描述

  • 优点:简单易懂,易于实现。
  • 缺点:忽略了词语的顺序和上下文信息,无法捕捉词与词之间的关系。

sklearn的实现:

from sklearn.feature_extraction.text import CountVectorizercorpus  #由字符串组成的列表
vector = CountVectorizer().fit(corpus)
train_vector = vector.transform(corpus)

2. TF-IDF

term frequency-inverse document frequency

TF-IDF是一种用于信息检索和文本挖掘的常用加权技术。它评估一个词对于一个文档集或一个语料库中的其中一份文档的重要程度。

TF (Term Frequency)中文含义是词频,IDF (Inverse Document Frequency)中文含义是逆文本频率指数。

TF统计的是词语在特定文档中出现的频率,而IDF统计的是词语在其他文章中出现的频率,其处理基本逻辑是词语的重要性随着其在特定文档中出现的次数呈现递增趋势,但同时会随着其在语料库中其他文档中出现的频率递减下降(考虑到有些常用词在所有文档里面都很常见)。
数学表达式如下:
TF-IDF ( w , d ) = TF ( w , d ) × IDF ( w ) \text{TF-IDF}(w,d)=\text{TF}(w,d)\times \text{IDF}(w) TF-IDF(w,d)=TF(w,d)×IDF(w)

  • 优点:能够减少常见词的影响,突出重要词汇。
  • 缺点:与BoW一样,忽略了词序和上下文信息。

sklearn的实现:

from sklearn.feature_extraction.text import TfidfVectorizertfidf=TfidfVectorizer(max_features=500)
corpus  #由字符串组成的列表
sp_tfidf=tfidf.fit_transform(corpus)  #返回稀疏矩阵,每一行是语料中对应文档的表示向量

3. word2vec

Word2Vec是一种预测模型,用于产生词嵌入。它有两种结构:连续词袋(CBOW)和跳字模型(Skip-Gram)。

  • 优点:能够捕捉一定程度的词序和上下文信息。
  • 缺点:对于每个词仅有一个嵌入表示,忽略了多义性。

原始论文:
Distributed Representations of Sentences and Documents:提出word2vec框架
Efficient Estimation of Word Representations in Vector Space:介绍训练trick:hierarchical softmax 和 negative sampling

1. skip-gram

用一个词语作为输入,来预测它周围的上下文

训练思路:用独热编码表示词语。输入这个词语的独热编码,转换为隐藏层编码,输出上下文的独热编码
在这里插入图片描述

2. CBOW

Continues Bag of Words

拿一个词语的上下文作为输入,来预测这个词语本身

在这里插入图片描述

4. LSA

LSA使用奇异值分解(SVD)技术来减少特征空间的维数,并捕捉词之间的隐含关系。

  • 优点:能够改善稀疏性问题,捕捉词义关系。
  • 缺点:计算复杂,难以处理非常大的语料库。

5. GloVe

GloVe结合了矩阵分解和局部上下文窗口的优点。它通过词与词共现的概率信息来生成词向量。

  • 优点:在全局语料统计和局部上下文信息之间找到了平衡。
  • 缺点:需要大量的语料数据来有效训练。

6. CoVe

原论文:(2017) Learned in Translation: Contextualized Word Vectors

早期LM的感觉

CoVe是一种基于上下文的词嵌入方法,它利用序列到序列的模型从大量翻译数据中学习词向量。

  • 优点:能够捕捉上下文中的词义变化,处理多义性问题。
  • 缺点:模型较为复杂,需要大量的训练数据和计算资源。

在这里插入图片描述
Cove: 从Word2Vec/Glove的启示 - 知乎


以上就是几种传统的词嵌入方法的简介。每种方法都有其独特之处,选择适合的词嵌入技术可以极大地提升自然语言处理任务的性能。希望这篇文章能帮助你更好地理解不同的词嵌入方法,为你的NLP项目选择合适的技术。

参考资料:

  1. 文本向量化的六种常见模式
  2. 还没看完:
    1. [NLP] 秒懂词向量Word2vec的本质 - 知乎(整理到“我举个例子,假设全世界所有的词语总共有 V 个,这 V 个词语有自己的先后顺序,假设『吴彦”这一行)
    2. 全面理解word2vec
    3. word2vec简介
    4. 词向量学习算法 Glove - 简书
    5. A Neural Probabilistic Language Model
    6. NLP方向Word2vec算法面试题6道|含解析
    7. (2011 PMLR) Deep Learning for Efficient Discriminative Parsing
    8. 深度学习word2vec笔记之基础篇-CSDN博客
    9. word2vec Explained: deriving Mikolov et al.'s negative-sampling word-embedding method
    10. word2vec Parameter Learning Explained
    11. word2vec 相比之前的 Word Embedding 方法好在什么地方? - 知乎
    12. (2016 国科大博士论文) 基于神经网络的词和文档语义向量表示方法研究
    13. On word embeddings - Part 2: Approximating the Softmax

这篇关于传统词嵌入方法的千层套路的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/646636

相关文章

C++实现回文串判断的两种高效方法

《C++实现回文串判断的两种高效方法》文章介绍了两种判断回文串的方法:解法一通过创建新字符串来处理,解法二在原字符串上直接筛选判断,两种方法都使用了双指针法,文中通过代码示例讲解的非常详细,需要的朋友... 目录一、问题描述示例二、解法一:将字母数字连接到新的 string思路代码实现代码解释复杂度分析三、

mysql8.0无备份通过idb文件恢复数据的方法、idb文件修复和tablespace id不一致处理

《mysql8.0无备份通过idb文件恢复数据的方法、idb文件修复和tablespaceid不一致处理》文章描述了公司服务器断电后数据库故障的过程,作者通过查看错误日志、重新初始化数据目录、恢复备... 周末突然接到一位一年多没联系的妹妹打来电话,“刘哥,快来救救我”,我脑海瞬间冒出妙瓦底,电信火苲马扁.

SpringBoot使用Jasypt对YML文件配置内容加密的方法(数据库密码加密)

《SpringBoot使用Jasypt对YML文件配置内容加密的方法(数据库密码加密)》本文介绍了如何在SpringBoot项目中使用Jasypt对application.yml文件中的敏感信息(如数... 目录SpringBoot使用Jasypt对YML文件配置内容进行加密(例:数据库密码加密)前言一、J

Spring Boot 中正确地在异步线程中使用 HttpServletRequest的方法

《SpringBoot中正确地在异步线程中使用HttpServletRequest的方法》文章讨论了在SpringBoot中如何在异步线程中正确使用HttpServletRequest的问题,... 目录前言一、问题的来源:为什么异步线程中无法访问 HttpServletRequest?1. 请求上下文与线

解读为什么@Autowired在属性上被警告,在setter方法上不被警告问题

《解读为什么@Autowired在属性上被警告,在setter方法上不被警告问题》在Spring开发中,@Autowired注解常用于实现依赖注入,它可以应用于类的属性、构造器或setter方法上,然... 目录1. 为什么 @Autowired 在属性上被警告?1.1 隐式依赖注入1.2 IDE 的警告:

SpringBoot快速接入OpenAI大模型的方法(JDK8)

《SpringBoot快速接入OpenAI大模型的方法(JDK8)》本文介绍了如何使用AI4J快速接入OpenAI大模型,并展示了如何实现流式与非流式的输出,以及对函数调用的使用,AI4J支持JDK8... 目录使用AI4J快速接入OpenAI大模型介绍AI4J-github快速使用创建SpringBoot

Android开发中gradle下载缓慢的问题级解决方法

《Android开发中gradle下载缓慢的问题级解决方法》本文介绍了解决Android开发中Gradle下载缓慢问题的几种方法,本文给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录一、网络环境优化二、Gradle版本与配置优化三、其他优化措施针对android开发中Gradle下载缓慢的问

python 3.8 的anaconda下载方法

《python3.8的anaconda下载方法》本文详细介绍了如何下载和安装带有Python3.8的Anaconda发行版,包括Anaconda简介、下载步骤、安装指南以及验证安装结果,此外,还介... 目录python3.8 版本的 Anaconda 下载与安装指南一、Anaconda 简介二、下载 An

Java中将异步调用转为同步的五种实现方法

《Java中将异步调用转为同步的五种实现方法》本文介绍了将异步调用转为同步阻塞模式的五种方法:wait/notify、ReentrantLock+Condition、Future、CountDownL... 目录异步与同步的核心区别方法一:使用wait/notify + synchronized代码示例关键

Python使用Pandas对比两列数据取最大值的五种方法

《Python使用Pandas对比两列数据取最大值的五种方法》本文主要介绍使用Pandas对比两列数据取最大值的五种方法,包括使用max方法、apply方法结合lambda函数、函数、clip方法、w... 目录引言一、使用max方法二、使用apply方法结合lambda函数三、使用np.maximum函数