本文主要是介绍PX4经纬度转东北天坐标c++代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
c++代码,用到了px4 v1.13.3里的geo.h头文件:
#include "geo.h" // from px4 geo utils (gps to ENU)// 设置参考点,即东北为(0,0)的点的经纬度
double ref_lat_ = 39.978861; //纬度
double ref_lon_ = 116.339803; //经度
MapProjection global_local_proj_ref{ref_lat_, ref_lon_, 0};// ENU坐标转换到经纬度
float north = 0.0;
float east = 0.0;
double lat; //纬度
double lon; //经度
global_local_proj_ref.reproject(north, east, lat, lon);// 经纬度转换到ENU坐标系
double lat = 39.978861; //纬度
double lon = 116.339803; //经度
float north;
float east;
global_local_proj_ref.reproject(lat, lon, north, east);
这里有个陷阱,经纬度必须用double数据类型!!!float的精度是不能满足小数点后七到八位的要求的。
顺便一提,这个geo.h转换比较简单,精度可能没那么高,距离远的话(比如1km)可能会和更精确的转换差1m左右。
附上geo.h和geo.cpp,编译的时候可以把geo.cpp编译成一个library再链接到你的程序,或者和你的程序一起编译。
#CMakeLists.txtadd_library(geo_libsrc/geo.cpp)add_executable(my_nodesrc/my_node.cpp)# link libraries for this lib
target_link_libraries(my_node${catkin_LIBRARIES}geo_lib
)
或者
#CMakeLists.txtadd_executable(my_nodesrc/my_node.cppsrc/geo.cpp)
geo.h:
/****************************************************************************** Copyright (C) 2012-2021 PX4 Development Team. All rights reserved.** Redistribution and use in source and binary forms, with or without* modification, are permitted provided that the following conditions* are met:** 1. Redistributions of source code must retain the above copyright* notice, this list of conditions and the following disclaimer.* 2. Redistributions in binary form must reproduce the above copyright* notice, this list of conditions and the following disclaimer in* the documentation and/or other materials provided with the* distribution.* 3. Neither the name PX4 nor the names of its contributors may be* used to endorse or promote products derived from this software* without specific prior written permission.** THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE* POSSIBILITY OF SUCH DAMAGE.*****************************************************************************//*** @file geo.h** Definition of geo / math functions to perform geodesic calculations** @author Thomas Gubler <thomasgubler@student.ethz.ch>* @author Julian Oes <joes@student.ethz.ch>* @author Lorenz Meier <lm@inf.ethz.ch>* @author Anton Babushkin <anton.babushkin@me.com>* Additional functions - @author Doug Weibel <douglas.weibel@colorado.edu>*/#pragma once#include <stdbool.h>
#include <stdint.h>#include <mathlib/mathlib.h>
#include <matrix/matrix/math.hpp>/************* Added by Peixuan Shu **********/
#include <drivers/drv_hrt.h>
/********************************************/static constexpr float CONSTANTS_ONE_G = 9.80665f; // m/s^2static constexpr float CONSTANTS_STD_PRESSURE_PA = 101325.0f; // pascals (Pa)
static constexpr float CONSTANTS_STD_PRESSURE_KPA = CONSTANTS_STD_PRESSURE_PA / 1000.0f; // kilopascals (kPa)
static constexpr float CONSTANTS_STD_PRESSURE_MBAR = CONSTANTS_STD_PRESSURE_PA /100.0f; // Millibar (mbar) (1 mbar = 100 Pa)static constexpr float CONSTANTS_AIR_DENSITY_SEA_LEVEL_15C = 1.225f; // kg/m^3
static constexpr float CONSTANTS_AIR_GAS_CONST = 287.1f; // J/(kg * K)
static constexpr float CONSTANTS_ABSOLUTE_NULL_CELSIUS = -273.15f; // °Cstatic constexpr double CONSTANTS_RADIUS_OF_EARTH = 6371000; // meters (m)
static constexpr float CONSTANTS_RADIUS_OF_EARTH_F = CONSTANTS_RADIUS_OF_EARTH; // meters (m)static constexpr float CONSTANTS_EARTH_SPIN_RATE = 7.2921150e-5f; // radians/second (rad/s)// XXX remove
struct crosstrack_error_s {bool past_end; // Flag indicating we are past the end of the line/arc segmentfloat distance; // Distance in meters to closest point on line/arcfloat bearing; // Bearing in radians to closest point on line/arc
} ;/*** Returns the distance to the next waypoint in meters.** @param lat_now current position in degrees (47.1234567°, not 471234567°)* @param lon_now current position in degrees (8.1234567°, not 81234567°)* @param lat_next next waypoint position in degrees (47.1234567°, not 471234567°)* @param lon_next next waypoint position in degrees (8.1234567°, not 81234567°)*/
float get_distance_to_next_waypoint(double lat_now, double lon_now, double lat_next, double lon_next);/*** Creates a new waypoint C on the line of two given waypoints (A, B) at certain distance* from waypoint A** @param lat_A waypoint A latitude in degrees (47.1234567°, not 471234567°)* @param lon_A waypoint A longitude in degrees (8.1234567°, not 81234567°)* @param lat_B waypoint B latitude in degrees (47.1234567°, not 471234567°)* @param lon_B waypoint B longitude in degrees (8.1234567°, not 81234567°)* @param dist distance of target waypoint from waypoint A in meters (can be negative)* @param lat_target latitude of target waypoint C in degrees (47.1234567°, not 471234567°)* @param lon_target longitude of target waypoint C in degrees (47.1234567°, not 471234567°)*/
void create_waypoint_from_line_and_dist(double lat_A, double lon_A, double lat_B, double lon_B, float dist,double *lat_target, double *lon_target);/*** Creates a waypoint from given waypoint, distance and bearing* see http://www.movable-type.co.uk/scripts/latlong.html** @param lat_start latitude of starting waypoint in degrees (47.1234567°, not 471234567°)* @param lon_start longitude of starting waypoint in degrees (8.1234567°, not 81234567°)* @param bearing in rad* @param distance in meters* @param lat_target latitude of target waypoint in degrees (47.1234567°, not 471234567°)* @param lon_target longitude of target waypoint in degrees (47.1234567°, not 471234567°)*/
void waypoint_from_heading_and_distance(double lat_start, double lon_start, float bearing, float dist,double *lat_target, double *lon_target);/*** Returns the bearing to the next waypoint in radians.** @param lat_now current position in degrees (47.1234567°, not 471234567°)* @param lon_now current position in degrees (8.1234567°, not 81234567°)* @param lat_next next waypoint position in degrees (47.1234567°, not 471234567°)* @param lon_next next waypoint position in degrees (8.1234567°, not 81234567°)*/
float get_bearing_to_next_waypoint(double lat_now, double lon_now, double lat_next, double lon_next);void get_vector_to_next_waypoint(double lat_now, double lon_now, double lat_next, double lon_next, float *v_n,float *v_e);void get_vector_to_next_waypoint_fast(double lat_now, double lon_now, double lat_next, double lon_next, float *v_n,float *v_e);void add_vector_to_global_position(double lat_now, double lon_now, float v_n, float v_e, double *lat_res,double *lon_res);int get_distance_to_line(struct crosstrack_error_s *crosstrack_error, double lat_now, double lon_now,double lat_start, double lon_start, double lat_end, double lon_end);int get_distance_to_arc(struct crosstrack_error_s *crosstrack_error, double lat_now, double lon_now,double lat_center, double lon_center,float radius, float arc_start_bearing, float arc_sweep);/** Calculate distance in global frame*/
float get_distance_to_point_global_wgs84(double lat_now, double lon_now, float alt_now,double lat_next, double lon_next, float alt_next,float *dist_xy, float *dist_z);/** Calculate distance in local frame (NED)*/
float mavlink_wpm_distance_to_point_local(float x_now, float y_now, float z_now,float x_next, float y_next, float z_next,float *dist_xy, float *dist_z);/*** @brief C++ class for mapping lat/lon coordinates to local coordinated using a reference position*/
class MapProjection final
{
private:uint64_t _ref_timestamp{0};double _ref_lat{0.0};double _ref_lon{0.0};double _ref_sin_lat{0.0};double _ref_cos_lat{0.0};bool _ref_init_done{false};public:/*** @brief Construct a new Map Projection object* The generated object will be uninitialized.* To initialize, use the `initReference` function*/MapProjection() = default;/*** @brief Construct and initialize a new Map Projection object*/MapProjection(double lat_0, double lon_0){initReference(lat_0, lon_0);}/*** @brief Construct and initialize a new Map Projection object*/MapProjection(double lat_0, double lon_0, uint64_t timestamp){initReference(lat_0, lon_0, timestamp);}/*** Initialize the map transformation** Initializes the transformation between the geographic coordinate system and* the azimuthal equidistant plane* @param lat in degrees (47.1234567°, not 471234567°)* @param lon in degrees (8.1234567°, not 81234567°)*/void initReference(double lat_0, double lon_0, uint64_t timestamp);/*** Initialize the map transformation** with reference coordinates on the geographic coordinate system* where the azimuthal equidistant plane's origin is located* @param lat in degrees (47.1234567°, not 471234567°)* @param lon in degrees (8.1234567°, not 81234567°)*/inline void initReference(double lat_0, double lon_0){initReference(lat_0, lon_0, hrt_absolute_time());}/*** @return true, if the map reference has been initialized before*/bool isInitialized() const { return _ref_init_done; };/*** @return the timestamp of the reference which the map projection was initialized with*/uint64_t getProjectionReferenceTimestamp() const { return _ref_timestamp; };/*** @return the projection reference latitude in degrees*/double getProjectionReferenceLat() const { return math::degrees(_ref_lat); };/*** @return the projection reference longitude in degrees*/double getProjectionReferenceLon() const { return math::degrees(_ref_lon); };/*** Transform a point in the geographic coordinate system to the local* azimuthal equidistant plane using the projection* @param lat in degrees (47.1234567°, not 471234567°)* @param lon in degrees (8.1234567°, not 81234567°)* @param x north* @param y east*/void project(double lat, double lon, float &x, float &y) const;/*** Transform a point in the geographic coordinate system to the local* azimuthal equidistant plane using the projection* @param lat in degrees (47.1234567°, not 471234567°)* @param lon in degrees (8.1234567°, not 81234567°)* @return the point in local coordinates as north / east*/inline matrix::Vector2f project(double lat, double lon) const{matrix::Vector2f res;project(lat, lon, res(0), res(1));return res;}/*** Transform a point in the local azimuthal equidistant plane to the* geographic coordinate system using the projection** @param x north* @param y east* @param lat in degrees (47.1234567°, not 471234567°)* @param lon in degrees (8.1234567°, not 81234567°)*/void reproject(float x, float y, double &lat, double &lon) const;
};
geo.cpp:
/****************************************************************************** Copyright (c) 2012-2021 PX4 Development Team. All rights reserved.** Redistribution and use in source and binary forms, with or without* modification, are permitted provided that the following conditions* are met:** 1. Redistributions of source code must retain the above copyright* notice, this list of conditions and the following disclaimer.* 2. Redistributions in binary form must reproduce the above copyright* notice, this list of conditions and the following disclaimer in* the documentation and/or other materials provided with the* distribution.* 3. Neither the name PX4 nor the names of its contributors may be* used to endorse or promote products derived from this software* without specific prior written permission.** THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE* POSSIBILITY OF SUCH DAMAGE.*****************************************************************************//*** @file geo.c** Geo / math functions to perform geodesic calculations** @author Thomas Gubler <thomasgubler@student.ethz.ch>* @author Julian Oes <joes@student.ethz.ch>* @author Lorenz Meier <lm@inf.ethz.ch>* @author Anton Babushkin <anton.babushkin@me.com>*/#include "geo.h"#include <float.h>using matrix::wrap_pi;
using matrix::wrap_2pi;#ifndef hrt_absolute_time
# define hrt_absolute_time() (0)
#endif/** Azimuthal Equidistant Projection* formulas according to: http://mathworld.wolfram.com/AzimuthalEquidistantProjection.html*/void MapProjection::initReference(double lat_0, double lon_0, uint64_t timestamp)
{_ref_timestamp = timestamp;_ref_lat = math::radians(lat_0);_ref_lon = math::radians(lon_0);_ref_sin_lat = sin(_ref_lat);_ref_cos_lat = cos(_ref_lat);_ref_init_done = true;
}void MapProjection::project(double lat, double lon, float &x, float &y) const
{const double lat_rad = math::radians(lat);const double lon_rad = math::radians(lon);const double sin_lat = sin(lat_rad);const double cos_lat = cos(lat_rad);const double cos_d_lon = cos(lon_rad - _ref_lon);const double arg = math::constrain(_ref_sin_lat * sin_lat + _ref_cos_lat * cos_lat * cos_d_lon, -1.0, 1.0);const double c = acos(arg);double k = 1.0;if (fabs(c) > 0) {k = (c / sin(c));}x = static_cast<float>(k * (_ref_cos_lat * sin_lat - _ref_sin_lat * cos_lat * cos_d_lon) * CONSTANTS_RADIUS_OF_EARTH);y = static_cast<float>(k * cos_lat * sin(lon_rad - _ref_lon) * CONSTANTS_RADIUS_OF_EARTH);
}void MapProjection::reproject(float x, float y, double &lat, double &lon) const
{const double x_rad = (double)x / CONSTANTS_RADIUS_OF_EARTH;const double y_rad = (double)y / CONSTANTS_RADIUS_OF_EARTH;const double c = sqrt(x_rad * x_rad + y_rad * y_rad);if (fabs(c) > 0) {const double sin_c = sin(c);const double cos_c = cos(c);const double lat_rad = asin(cos_c * _ref_sin_lat + (x_rad * sin_c * _ref_cos_lat) / c);const double lon_rad = (_ref_lon + atan2(y_rad * sin_c, c * _ref_cos_lat * cos_c - x_rad * _ref_sin_lat * sin_c));lat = math::degrees(lat_rad);lon = math::degrees(lon_rad);} else {lat = math::degrees(_ref_lat);lon = math::degrees(_ref_lon);}
}float get_distance_to_next_waypoint(double lat_now, double lon_now, double lat_next, double lon_next)
{const double lat_now_rad = math::radians(lat_now);const double lat_next_rad = math::radians(lat_next);const double d_lat = lat_next_rad - lat_now_rad;const double d_lon = math::radians(lon_next) - math::radians(lon_now);const double a = sin(d_lat / 2.0) * sin(d_lat / 2.0) + sin(d_lon / 2.0) * sin(d_lon / 2.0) * cos(lat_now_rad) * cos(lat_next_rad);const double c = atan2(sqrt(a), sqrt(1.0 - a));return static_cast<float>(CONSTANTS_RADIUS_OF_EARTH * 2.0 * c);
}void create_waypoint_from_line_and_dist(double lat_A, double lon_A, double lat_B, double lon_B, float dist,double *lat_target, double *lon_target)
{if (fabsf(dist) < FLT_EPSILON) {*lat_target = lat_A;*lon_target = lon_A;} else {float heading = get_bearing_to_next_waypoint(lat_A, lon_A, lat_B, lon_B);waypoint_from_heading_and_distance(lat_A, lon_A, heading, dist, lat_target, lon_target);}
}void waypoint_from_heading_and_distance(double lat_start, double lon_start, float bearing, float dist,double *lat_target, double *lon_target)
{bearing = wrap_2pi(bearing);double radius_ratio = static_cast<double>(dist) / CONSTANTS_RADIUS_OF_EARTH;double lat_start_rad = math::radians(lat_start);double lon_start_rad = math::radians(lon_start);*lat_target = asin(sin(lat_start_rad) * cos(radius_ratio) + cos(lat_start_rad) * sin(radius_ratio) * cos((double)bearing));*lon_target = lon_start_rad + atan2(sin((double)bearing) * sin(radius_ratio) * cos(lat_start_rad),cos(radius_ratio) - sin(lat_start_rad) * sin(*lat_target));*lat_target = math::degrees(*lat_target);*lon_target = math::degrees(*lon_target);
}float get_bearing_to_next_waypoint(double lat_now, double lon_now, double lat_next, double lon_next)
{const double lat_now_rad = math::radians(lat_now);const double lat_next_rad = math::radians(lat_next);const double cos_lat_next = cos(lat_next_rad);const double d_lon = math::radians(lon_next - lon_now);/* conscious mix of double and float trig function to maximize speed and efficiency */const float y = static_cast<float>(sin(d_lon) * cos_lat_next);const float x = static_cast<float>(cos(lat_now_rad) * sin(lat_next_rad) - sin(lat_now_rad) * cos_lat_next * cos(d_lon));return wrap_pi(atan2f(y, x));
}void
get_vector_to_next_waypoint(double lat_now, double lon_now, double lat_next, double lon_next, float *v_n, float *v_e)
{const double lat_now_rad = math::radians(lat_now);const double lat_next_rad = math::radians(lat_next);const double d_lon = math::radians(lon_next) - math::radians(lon_now);/* conscious mix of double and float trig function to maximize speed and efficiency */*v_n = static_cast<float>(CONSTANTS_RADIUS_OF_EARTH * (cos(lat_now_rad) * sin(lat_next_rad) - sin(lat_now_rad) * cos(lat_next_rad) * cos(d_lon)));*v_e = static_cast<float>(CONSTANTS_RADIUS_OF_EARTH * sin(d_lon) * cos(lat_next_rad));
}void
get_vector_to_next_waypoint_fast(double lat_now, double lon_now, double lat_next, double lon_next, float *v_n,float *v_e)
{double lat_now_rad = math::radians(lat_now);double lon_now_rad = math::radians(lon_now);double lat_next_rad = math::radians(lat_next);double lon_next_rad = math::radians(lon_next);double d_lat = lat_next_rad - lat_now_rad;double d_lon = lon_next_rad - lon_now_rad;/* conscious mix of double and float trig function to maximize speed and efficiency */*v_n = static_cast<float>(CONSTANTS_RADIUS_OF_EARTH * d_lat);*v_e = static_cast<float>(CONSTANTS_RADIUS_OF_EARTH * d_lon * cos(lat_now_rad));
}void add_vector_to_global_position(double lat_now, double lon_now, float v_n, float v_e, double *lat_res,double *lon_res)
{double lat_now_rad = math::radians(lat_now);double lon_now_rad = math::radians(lon_now);*lat_res = math::degrees(lat_now_rad + (double)v_n / CONSTANTS_RADIUS_OF_EARTH);*lon_res = math::degrees(lon_now_rad + (double)v_e / (CONSTANTS_RADIUS_OF_EARTH * cos(lat_now_rad)));
}// Additional functions - @author Doug Weibel <douglas.weibel@colorado.edu>int get_distance_to_line(struct crosstrack_error_s *crosstrack_error, double lat_now, double lon_now,double lat_start, double lon_start, double lat_end, double lon_end)
{// This function returns the distance to the nearest point on the track line. Distance is positive if current// position is right of the track and negative if left of the track as seen from a point on the track line// headed towards the end point.int return_value = -1; // Set error flag, cleared when valid result calculated.crosstrack_error->past_end = false;crosstrack_error->distance = 0.0f;crosstrack_error->bearing = 0.0f;float dist_to_end = get_distance_to_next_waypoint(lat_now, lon_now, lat_end, lon_end);// Return error if arguments are badif (dist_to_end < 0.1f) {return -1;}float bearing_end = get_bearing_to_next_waypoint(lat_now, lon_now, lat_end, lon_end);float bearing_track = get_bearing_to_next_waypoint(lat_start, lon_start, lat_end, lon_end);float bearing_diff = wrap_pi(bearing_track - bearing_end);// Return past_end = true if past end point of lineif (bearing_diff > M_PI_2_F || bearing_diff < -M_PI_2_F) {crosstrack_error->past_end = true;return_value = 0;return return_value;}crosstrack_error->distance = (dist_to_end) * sinf(bearing_diff);if (sinf(bearing_diff) >= 0) {crosstrack_error->bearing = wrap_pi(bearing_track - M_PI_2_F);} else {crosstrack_error->bearing = wrap_pi(bearing_track + M_PI_2_F);}return_value = 0;return return_value;
}int get_distance_to_arc(struct crosstrack_error_s *crosstrack_error, double lat_now, double lon_now,double lat_center, double lon_center,float radius, float arc_start_bearing, float arc_sweep)
{// This function returns the distance to the nearest point on the track arc. Distance is positive if current// position is right of the arc and negative if left of the arc as seen from the closest point on the arc and// headed towards the end point.// Determine if the current position is inside or outside the sector between the line from the center// to the arc start and the line from the center to the arc endfloat bearing_sector_start = 0.0f;float bearing_sector_end = 0.0f;float bearing_now = get_bearing_to_next_waypoint(lat_now, lon_now, lat_center, lon_center);int return_value = -1; // Set error flag, cleared when valid result calculated.crosstrack_error->past_end = false;crosstrack_error->distance = 0.0f;crosstrack_error->bearing = 0.0f;// Return error if arguments are badif (radius < 0.1f) {return return_value;}if (arc_sweep >= 0.0f) {bearing_sector_start = arc_start_bearing;bearing_sector_end = arc_start_bearing + arc_sweep;if (bearing_sector_end > 2.0f * M_PI_F) { bearing_sector_end -= (2 * M_PI_F); }} else {bearing_sector_end = arc_start_bearing;bearing_sector_start = arc_start_bearing - arc_sweep;if (bearing_sector_start < 0.0f) { bearing_sector_start += (2 * M_PI_F); }}bool in_sector = false;// Case where sector does not span zeroif (bearing_sector_end >= bearing_sector_start && bearing_now >= bearing_sector_start&& bearing_now <= bearing_sector_end) {in_sector = true;}// Case where sector does span zeroif (bearing_sector_end < bearing_sector_start && (bearing_now > bearing_sector_start|| bearing_now < bearing_sector_end)) {in_sector = true;}// If in the sector then calculate distance and bearing to closest pointif (in_sector) {crosstrack_error->past_end = false;float dist_to_center = get_distance_to_next_waypoint(lat_now, lon_now, lat_center, lon_center);if (dist_to_center <= radius) {crosstrack_error->distance = radius - dist_to_center;crosstrack_error->bearing = bearing_now + M_PI_F;} else {crosstrack_error->distance = dist_to_center - radius;crosstrack_error->bearing = bearing_now;}// If out of the sector then calculate dist and bearing to start or end point} else {// Use the approximation that 111,111 meters in the y direction is 1 degree (of latitude)// and 111,111 * cos(latitude) meters in the x direction is 1 degree (of longitude) to// calculate the position of the start and end points. We should not be doing this often// as this function generally will not be called repeatedly when we are out of the sector.double start_disp_x = (double)radius * sin((double)arc_start_bearing);double start_disp_y = (double)radius * cos((double)arc_start_bearing);double end_disp_x = (double)radius * sin((double)wrap_pi(arc_start_bearing + arc_sweep));double end_disp_y = (double)radius * cos((double)wrap_pi(arc_start_bearing + arc_sweep));double lon_start = lon_now + start_disp_x / 111111.0;double lat_start = lat_now + start_disp_y * cos(lat_now) / 111111.0;double lon_end = lon_now + end_disp_x / 111111.0;double lat_end = lat_now + end_disp_y * cos(lat_now) / 111111.0;float dist_to_start = get_distance_to_next_waypoint(lat_now, lon_now, lat_start, lon_start);float dist_to_end = get_distance_to_next_waypoint(lat_now, lon_now, lat_end, lon_end);if (dist_to_start < dist_to_end) {crosstrack_error->distance = dist_to_start;crosstrack_error->bearing = get_bearing_to_next_waypoint(lat_now, lon_now, lat_start, lon_start);} else {crosstrack_error->past_end = true;crosstrack_error->distance = dist_to_end;crosstrack_error->bearing = get_bearing_to_next_waypoint(lat_now, lon_now, lat_end, lon_end);}}crosstrack_error->bearing = wrap_pi(crosstrack_error->bearing);return_value = 0;return return_value;
}float get_distance_to_point_global_wgs84(double lat_now, double lon_now, float alt_now,double lat_next, double lon_next, float alt_next,float *dist_xy, float *dist_z)
{double current_x_rad = math::radians(lat_next);double current_y_rad = math::radians(lon_next);double x_rad = math::radians(lat_now);double y_rad = math::radians(lon_now);double d_lat = x_rad - current_x_rad;double d_lon = y_rad - current_y_rad;double a = sin(d_lat / 2.0) * sin(d_lat / 2.0) + sin(d_lon / 2.0) * sin(d_lon / 2.0) * cos(current_x_rad) * cos(x_rad);double c = 2 * atan2(sqrt(a), sqrt(1 - a));const float dxy = static_cast<float>(CONSTANTS_RADIUS_OF_EARTH * c);const float dz = static_cast<float>(alt_now - alt_next);*dist_xy = fabsf(dxy);*dist_z = fabsf(dz);return sqrtf(dxy * dxy + dz * dz);
}float mavlink_wpm_distance_to_point_local(float x_now, float y_now, float z_now,float x_next, float y_next, float z_next,float *dist_xy, float *dist_z)
{float dx = x_now - x_next;float dy = y_now - y_next;float dz = z_now - z_next;*dist_xy = sqrtf(dx * dx + dy * dy);*dist_z = fabsf(dz);return sqrtf(dx * dx + dy * dy + dz * dz);
}
这篇关于PX4经纬度转东北天坐标c++代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!