[Python] 深入理解元类并区分元类中的init、call、new方法

2024-01-25 03:08

本文主要是介绍[Python] 深入理解元类并区分元类中的init、call、new方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

[Python] 深入理解元类并区分元类中init、call、new方法

      • 0. 参考书籍和元类的作用总结
      • 1. 元类的定义
      • 2. 区分继承自 type 和使用 metaclass 关键字
      • 3. 类装饰器的运行
      • 4. 元类的运行
      • 5. 理解元类的四个参数
      • 6. 元类中的 init 、call、new 方法
      • 7. 元类中的prepare方法
      • 8. 元类的妙用

0. 参考书籍和元类的作用总结

本文内容参考书籍《流畅的Python》《Effective Python》《编写高质量代码:改善Python程序的91个建议》。我只是知识的搬运工,将知识进行整理,区分出其中的重点并加入自己的理解。感兴趣的最好去翻看原书的相关内容。

  1. 执行到类的代码体结束后时,会调用该类的元类中的__new____init__方法,利用这两个方法,可以对类做一些定制化的操作。
  2. 初始化类的实例时,会调动该类的元类中的__call__方法,利用这个方法,可以对类的实例对象做一下定制化的操作。
  3. 初始化类的实例时,__call____new____init__三个方法的执行顺序是 元类__call__、类的__new__、类的__init__

这三点参考 【6. 元类中的 init 、call、new 方法】,结合代码的执行顺序就可以理解了。

1. 元类的定义

元类是制造类的工厂,元类是用于构建类的类。 这句话很重要!!!这句话很重要!!!这句话很重要!!!

我们正常定义类是这样的:

class Person(object):passclass Child(Person):ClassName = 'Child'def __init__(self, name, age):if age > 20:raise ValueError("Child's age must small than 20")self._name = nameself._age = agedef speak(self):print(self._name, self._age)

我们还可以使用 type 来动态创建类:

class Person(object):passClassName = 'Child'
def __init__(self, name, age):if age > 20:raise ValueError("Child's age must small than 20")self._name = nameself._age = agedef speak(self):print(self._name, self._age)# type 的三个参数分别是 name、bases 和 dict。最后一个参数是一个映射,指定新类的属性名和值。
Child = type('Child', (Person,), {'ClassName': ClassName,'__init__': __init__,'speak': speak})
john = Child('John', 20)
john.speak()
print(Child.__dict__)  # 有 ClassName,__init__ 和 speak 属性

使用 type 关键字去拼接函数和属性来创建类,实在是不够优雅。之所以谈到这个,是为了方便我们后面理解元类是如何动态改变类的属性的。

2. 区分继承自 type 和使用 metaclass 关键字

元类从 type 类继承了构建类的能力。所有类都直接或间接地是 type 的实例,不过只有元类同时也是 type 的子类。搞清楚这句话,意思就是,元类是 type 类的子类。使用 metaclass 关键字的类并不是type 的子类。

class ClassOne(type):  # 这个是元类passclass ClassTwo(metaclass=type):  # 不是元类,是用元类创建的类passclass ClassThree(object, metaclass=type):   # 与ClassTwo一模一样。不是元类,是用元类创建的类passclass ClassFour(ClassOne):  # 继承自元类,是元类passprint(ClassOne.__mro__)
print(ClassTwo.__mro__)
print(ClassThree.__mro__)
print(ClassFour.__mro__)
(<class '__main__.ClassOne'>, <class 'type'>, <class 'object'>)
(<class '__main__.ClassTwo'>, <class 'object'>)
(<class '__main__.ClassThree'>, <class 'object'>)
(<class '__main__.ClassFour'>, <class '__main__.ClassOne'>, <class 'type'>, <class 'object'>)

一定要搞清继承自 type 和使用 metaclass 关键字的不同。前者是元类,后者是由元类创建的类。

3. 类装饰器的运行

为什么要讲类装饰器?因为类装饰器能以较简单的方式做到需要使用元类去做的事情 ——创建类时定制类。

类装饰器与函数装饰器非常类似,是参数为类对象的函数,返回原来的类或修改后的类。我们先来看代码,你可以尝试写一写答案:

"""
请问代码中print语句的打印顺序?
"""
def deco_alpha(cls):print('<[200]> deco_alpha')def inner_1(self):print('<[300]> deco_alpha:inner_1')cls.method_y = inner_1return cls@deco_alpha
class ClassThree():print('<[7]> ClassThree body')def method_y(self):print('<[8]> ClassThree.method_y')if __name__ == '__main__':print('<[12]> ClassThree tests', 30 * '.')three = ClassThree()three.method_y()
<[7]> ClassThree body		# MetaAleph 类的定义体运行了
<[200]> deco_alpha			# 装饰器函数运行了
<[12]> ClassThree tests ......
<[300]> deco_alpha:inner_1	# 装饰器覆盖了原有 MetaAleph 类的 method_y

先运行了被装饰的类 ClassThree 的定义体,然后运行装饰器函数,装饰器函数覆盖了原有 MetaAleph 类的 method_y 方法。

类装饰器有个重大缺点:只对直接依附的类有效。 如果我们新增一个 ClassThree 的子类 ClassFour:

"""
请问代码中print语句的打印顺序?
"""
def deco_alpha(cls):print('<[200]> deco_alpha')def inner_1(self):print('<[300]> deco_alpha:inner_1')cls.method_y = inner_1return cls@deco_alpha
class ClassThree():print('<[7]> ClassThree body')def method_y(self):print('<[8]> ClassThree.method_y')class ClassFour(ClassThree):print('<[9]> ClassFour body')def method_y(self):print('<[10]> ClassFour.method_y')if __name__ == '__main__':print('<[12]> ClassThree tests', 30 * '.')three = ClassThree()three.method_y()print('<[13]> ClassFour tests', 30 * '.')four = ClassFour()four.method_y()
<[7]> ClassThree body
<[200]> deco_alpha
<[9]> ClassFour body
<[12]> ClassThree tests ..............................
<[300]> deco_alpha:inner_1
<[13]> ClassFour tests ..............................
<[10]> ClassFour.method_y

类装饰器可能对子类没有影响。我们把 ClassFour 定义为 ClassThree 的子类,但是发现 ClassFour 的 method_y 方法并没有被覆盖。ClassThree 类上依附的 @deco_alpha 装饰器把 method_y 方法替换掉了,但是这对 ClassFour 类根本没有影响。当然,如果 ClassFour.method_y 方法使用 super(…) 调用 ClassThree.method_y 方法,我们便会看到装饰器起作用,执行 inner_1 函数。

类装饰器的缺点就是一次只定制一个类, 而不是定制整个类层次结构。 而元类就是为了解决这个缺点的,元类可以定制整个类层次结构。

4. 元类的运行

元类可以定制整个类层次结构。我们先看看代码,代码中 print 的语句较多,结构其实并不复杂,尝试写一写答案:

"""
请问代码中print语句的打印顺序?
"""
class MetaAleph(type):print('<[400]> MetaAleph body')def __init__(cls, name, bases, dic):print('<[500]> MetaAleph.__init__')def inner_2(self):print('<[600]> MetaAleph.__init__:inner_2')cls.method_z = inner_2print('<a> ClassFive Before')
class ClassFive(metaclass=MetaAleph):print('<[6]> ClassFive body start')def __init__(self):print('<[7]> ClassFive.__init__')def method_z(self):print('<[8]> ClassFive.method_y')print('<[11]> ClassFive body end')print('<c> ClassSix Before')
class ClassSix(ClassFive):print('<[9]> ClassSix body start')def method_z(self):print('<[10]> ClassSix.method_y')print('<[12]> ClassSix body end')if __name__ == '__main__':print('<[13]> ClassFive tests', 30 * '.')five = ClassFive()five.method_z()print('<[14]> ClassSix tests', 30 * '.')six = ClassSix()six.method_z()
<[400]> MetaAleph body
<a> ClassFive Before
<[6]> ClassFive body start
<[11]> ClassFive body end
<[500]> MetaAleph.__init__
<c> ClassSix Before
<[9]> ClassSix body start
<[12]> ClassSix body end
<[500]> MetaAleph.__init__
<[13]> ClassFive tests ..............................
<[7]> ClassFive.__init__
<[600]> MetaAleph.__init__:inner_2
<[14]> ClassSix tests ..............................
<[7]> ClassFive.__init__
<[600]> MetaAleph.__init__:inner_2

ClassSix 类没有直接引用 MetaAleph 类,但是却受到了影响,因为它是 ClassFive 的子类,进而也是 MetaAleph 类的实例,所以由 MetaAleph.__init__ 方法初始化。 这就是元类的作用了。

5. 理解元类的四个参数

Python 解释器运行到 ClassFive 类的定义体时没有调用 type 构建具体的类定义体,而是调用 MetaAleph 类。看一下示例中定义的 MetaAleph 类,你会发现 __init__ 方法有四个参数。
> cls
这是要初始化的类对象(例如 ClassFive)。
> name、bases、dic
与构建类时传给 type 的参数一样。记得这串代码吗? type 的三个参数 name、bases、dic :
Child = type('Child', (Person,), {'ClassName': ClassName,'__init__': __init__,'speak': speak})

6. 元类中的 init 、call、new 方法

话不多说,直接上代码,体会一下三个方法的运行顺序。

class MetaAleph(type):print('<[100]> MetaAleph body')def __init__(cls, name, bases, dic):super().__init__(name, bases, dic)print('<[500]> MetaAleph.__init__')print('<[501]> MetaAleph. —— name:', name)print('<[502]> MetaAleph. —— bases:', bases)print('<[503]> MetaAleph. —— dic:', dic)     # dic 中包含ClassFive的class_name、__init__、__new__、__call__def __new__(mcs, name, bases, dic):print('<[600]> MetaAleph.__new__')return super().__new__(mcs, name, bases, dic)def __call__(cls, *args, **kwargs):print('<[700]> MetaAleph.__call__')return super().__call__(*args, **kwargs)class ClassFive(metaclass=MetaAleph):print('<[6]> ClassFive body start')class_name = 'ClassFive'def __init__(self):print('<[7]> ClassFive.__init__')def __new__(cls, *args, **kwargs):print('<[8]> ClassFive.__new__')return super().__new__(cls)def __call__(self, *args, **kwargs):print('<[9]> ClassFive.__call__')return '<[10]> ClassFive.__call__ return'if __name__ == '__main__':print('<[13]> ClassFive tests', 30 * '.')five = ClassFive()print(five())  # 为了调用ClassFive.__call__
<[100]> MetaAleph body
<[6]> ClassFive body start
<[600]> MetaAleph.__new__
<[500]> MetaAleph.__init__
<[501]> MetaAleph. —— name: ClassFive
<[502]> MetaAleph. —— bases: ()
<[503]> MetaAleph. —— dic: {'__module__': '__main__', '__qualname__': 'ClassFive', 'class_name': 'ClassFive', '__init__': <function ClassFive.__init__ at 0x0000020FE6CE5B88>, '__new__': <function ClassFive.__new__ at 0x0000020FE6CE5C18>, '__call__': <function ClassFive.__call__ at 0x0000020FE6CE5CA8>, '__classcell__': <cell at 0x0000020FD5D89A38: MetaAleph object at 0x0000020FE658EDC8>}
<[13]> ClassFive tests ..............................
<[700]> MetaAleph.__call__
<[8]> ClassFive.__new__
<[7]> ClassFive.__init__
<[9]> ClassFive.__call__
<[10]> ClassFive.__call__ return

再次总结一下:

  1. 执行到类的代码体结束后时,会调用该类的元类中的__new____init__方法,利用这两个方法,可以对类做一些定制化的操作。一般来说实现 __init__ 方法就可以了。
  2. 初始化类的实例时,会调动该类的元类中的__call__方法,利用这个方法,可以对类的实例对象做一下定制化的操作。
  3. 初始化类的实例时,__call____new____init__三个方法的执行顺序是 元类__call__、类的__new__、类的__init__

7. 元类中的prepare方法

元类构建新类时,__prepare__ 方法返回的映射会传给 __new__ 方法的最后一个参数,然后再传给 __init__ 方法。看示例,十分简单:

其余不变,就增加一个 __prepare__ 方法:

class MetaAleph(type):print('<[100]> MetaAleph body')@classmethoddef __prepare__(mcs, name, bases):  # 必须要是类方法print('<[200]> MetaAleph.__prepare__')_dict = super().__prepare__(name, bases)print('<[201]> MetaAleph.__prepare__ dict:', _dict)return _dict        # 返回的映射会传递给__new__方法的最后一个参数,然后再传给__init__方法... ...
<[100]> MetaAleph body
<[200]> MetaAleph.__prepare__
<[201]> MetaAleph.__prepare__ dict: {}
<[6]> ClassFive body start
<[600]> MetaAleph.__new__
<[500]> MetaAleph.__init__
<[501]> MetaAleph. —— name: ClassFive
<[502]> MetaAleph. —— bases: ()
<[503]> MetaAleph. —— dic: {'__module__': '__main__', '__qualname__': 'ClassFive', 'class_name': 'ClassFive', '__init__': <function ClassFive.__init__ at 0x0000029011AF5CA8>, '__new__': <function ClassFive.__new__ at 0x0000029011AF5D38>, '__call__': <function ClassFive.__call__ at 0x0000029011AF5DC8>, '__classcell__': <cell at 0x00000290027A55E8: MetaAleph object at 0x0000029011466BB8>}
<[13]> ClassFive tests ..............................
<[700]> MetaAleph.__call__
<[8]> ClassFive.__new__
<[7]> ClassFive.__init__
<[9]> ClassFive.__call__
<[10]> ClassFive.__call__ return

使用 collections.OrderedDict() 可以将用户定义的类中声明的字段按顺序记录下来,比如与 CSV 文件中各列的顺序对应起来:

import collectionsclass MetaAleph(type):@classmethoddef __prepare__(mcs, name, bases):  # 必须要是类方法return collections.OrderedDict()

8. 元类的妙用

待续/…

这篇关于[Python] 深入理解元类并区分元类中的init、call、new方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/641900

相关文章

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

浅谈主机加固,六种有效的主机加固方法

在数字化时代,数据的价值不言而喻,但随之而来的安全威胁也日益严峻。从勒索病毒到内部泄露,企业的数据安全面临着前所未有的挑战。为了应对这些挑战,一种全新的主机加固解决方案应运而生。 MCK主机加固解决方案,采用先进的安全容器中间件技术,构建起一套内核级的纵深立体防护体系。这一体系突破了传统安全防护的局限,即使在管理员权限被恶意利用的情况下,也能确保服务器的安全稳定运行。 普适主机加固措施:

webm怎么转换成mp4?这几种方法超多人在用!

webm怎么转换成mp4?WebM作为一种新兴的视频编码格式,近年来逐渐进入大众视野,其背后承载着诸多优势,但同时也伴随着不容忽视的局限性,首要挑战在于其兼容性边界,尽管WebM已广泛适应于众多网站与软件平台,但在特定应用环境或老旧设备上,其兼容难题依旧凸显,为用户体验带来不便,再者,WebM格式的非普适性也体现在编辑流程上,由于它并非行业内的通用标准,编辑过程中可能会遭遇格式不兼容的障碍,导致操

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验