yolov2原理到代码

2024-01-25 02:30
文章标签 代码 原理 yolov2

本文主要是介绍yolov2原理到代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

yolov2原理到代码

    • yolov2较yolov1改进的地方
    • 对图片真实框的处理
    • 真实框与anchor box的IOU计算方法
    • yolov2流程

yolov2较yolov1改进的地方

从输入图片角度:

  • 用高分辨率图片对识别网络进行了微调
  • 采用多尺度训练

从网络设计角度:

  • 增加了Batchnorm层
  • 设计了新的网络(Darknet19)
  • 增加了细粒度分类

从损失函数角度:

  • 采用anchors box
  • 利用维度聚类得出anchors box的宽高和最佳个数(5个)
  • 采用直接坐标预测法进行预测

对图片真实框的处理

  • yolov1:计算出目标在 S ∗ S S*S SS 网格中的位置,将该网格对应的B个bounding box 均设为有目标,且具体目标信息(包括置信度、box坐标、类别概率)均一致,不涉及到IOU的计算。
  • yolov2:分别计算一张图片中每个目标在 S ∗ S S*S SS 网格中的位置,再计算目标与每个anchor box的IOU,选择IOU最大的anchor box,将该位置设置为有目标,其他位置均设置为无目标。若最大的IOU为零,则所有anchor box位置均为无目标。
    tips:其实不会出现完全没有交集,即IOU=0的情况。可根据计算iou的过程得出结论。

真实框与anchor box的IOU计算方法

由于anchor box提供的是宽和高,计算IOU时假定anchor box的中心与目标所在中心位置一致,因此计算IOU其实用不到目标中心坐标,只利用anchor box和真实框的宽和高就可算出。具体如下:
在这里插入图片描述

yolov2流程

  • 对于输入图片image,设宽和高分别为 ( w i d t h , h e i g h t ) (width, height) (width,height),将true boxes的坐上坐标和右下坐标转化为中心坐标和宽高 ( x , y , w , h ) (x,y,w,h) (x,y,w,h),再 ( x , y , w , h ) / ( w i d t h , h e i g h t , w i t h , h e i g h t ) (x,y,w,h)/(width,height,with,height) (x,y,w,h)/(width,height,with,height)将true boxes归一化到 ( 0 , 1 ) (0,1) (0,1) 区间内。

  • 根据处理后的true boxes、anchors以及resize的图片大小,将true boxes转化为 ( 13 ? , 13 ? , n u m a n c h o r s , 5 ) (13?,13?,num_{anchors},5) (13?,13?,numanchors,5)的形式,再输出一个 ( 13 ? , 13 ? , n u m a n c h o r s , 1 ) (13?,13?,num_{anchors},1) (13?,13?,numanchors,1)的向量,表示某个anchors与其中一个true box最匹配,匹配位置记为1,其他位置记为0。具体:
    x , y , w , h x,y,w,h x,y,w,h乘上输出特征图大小(例如 13 ∗ 13 13*13 1313)对每个true box都做该处理,然后与anchor box进行匹配,计算出最匹配的anchor box,最终输出的 x , y x,y x,y ( x , y ) ∗ ( 13 , 13 ) − f l o o r ( ( x , y ) ∗ ( 13 , 13 ) ) (x,y)*(13,13)-floor((x,y)*(13,13)) (x,y)(13,13)floor((x,y)(13,13)),输出的 w , h w,h w,h l o g ( ( ( w , h ) ∗ ( 13 , 13 ) ) / a n c h o r s [ b e s t a n c h o r ] ) log(((w,h)*(13,13))/anchors[best_{anchor}]) log(((w,h)(13,13))/anchors[bestanchor]),最后一个是类别。

  • 构建模型

  • 构建损失函数
    损失函数计算:
    1)首先将网络出书输出转化为与true boxes相同的格式:
    网络输出为 ( 13 ? , 13 ? , n u m a n c h o r s , 5 + n u m c l a s s e s ) (13?,13?,num_{anchors},5+num_{classes}) (13?,13?,numanchors,5+numclasses) 5 + n u m c l a s s e s 5+num_{classes} 5+numclasses中的前两个分别为中心坐标 x , y x,y x,y,接下来两个人分别为宽高 w , h w,h w,h,再接下来一个是置信度,最后 n u m c l a s s e s num_{classes} numclasses个为类别概率。
    x , y , c o n f i d e n c e x,y,confidence x,y,confidence分别用 s i g m o i d sigmoid sigmoid函数激活, w , h w,h w,h取指数,类别概率用 s o f t m a x softmax softmax函数激活。
    x , y x,y x,y分别转化为相对于 13 ∗ 13 13*13 1313大小的图片的位置,范围还是 ( 0 , 1 ) (0,1) (0,1),将 w , h w,h w,h分别转化为相对于anchor box与 13 ∗ 13 13*13 1313的相对位置
    对应代码段如下
    box_xy = (box_xy + conv_index) / conv_dims
    box_wh = box_wh * anchors_tensor / conv_dims
    2)将pred box与true box的坐标形式 ( x , y , w , h ) (x,y,w,h) (x,y,w,h) 均转化为 ( x 1 , y 1 , x 2 , y 2 ) (x_1,y_1,x_2,y_2) (x1,y1,x2,y2) 的形式,计算IOU,根据最大的IOU是否超过设定阈值,判断该anchor box是否有目标,再计算损失函数(损失函数用的true box是根据第二项计算的 ( x , y , w , h ) (x,y,w,h) (x,y,w,h)算,用的pred box是根据下面的方式计算:
    直接对输出 ( 13 ? , 13 ? , n u m a n c h o r s , 5 + n u m c l a s s e s ) (13?,13?,num_{anchors},5+num_{classes}) (13?,13?,numanchors,5+numclasses) 5 + n u m c l a s s e s 5+num{classes} 5+numclasses 的前两个
    取sigmoid作为中心坐标,后两个直接作为宽高,将这个作为pred box,与true box对应位置相减计算定位损失,对于分类损失和置信度损失用的是第1)步计算出的置信度和类别概率)

  • 预测时,输出的前四个为相对于anchors的 ( x , y , w , h ) (x,y,w,h) (x,y,w,h),先转化为相对于整张图片的 ( x , y , w , h ) (x,y,w,h) (x,y,w,h),再将其转化为 ( x 1 , y 1 , x 2 , y 2 ) (x_1,y_1,x_2,y_2) (x1,y1,x2,y2),计算得分,选择超过门限的anchors box,最后做非极大值抑制。
    乘以原始图片的 ( w i d t h , h e i g h t , w i d t h , h e i g h t ) (width,height,width,height) (width,height,width,height)得出真实的坐标位置。

这篇关于yolov2原理到代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/641810

相关文章

从原理到实战深入理解Java 断言assert

《从原理到实战深入理解Java断言assert》本文深入解析Java断言机制,涵盖语法、工作原理、启用方式及与异常的区别,推荐用于开发阶段的条件检查与状态验证,并强调生产环境应使用参数验证工具类替代... 目录深入理解 Java 断言(assert):从原理到实战引言:为什么需要断言?一、断言基础1.1 语

Java中调用数据库存储过程的示例代码

《Java中调用数据库存储过程的示例代码》本文介绍Java通过JDBC调用数据库存储过程的方法,涵盖参数类型、执行步骤及数据库差异,需注意异常处理与资源管理,以优化性能并实现复杂业务逻辑,感兴趣的朋友... 目录一、存储过程概述二、Java调用存储过程的基本javascript步骤三、Java调用存储过程示

Visual Studio 2022 编译C++20代码的图文步骤

《VisualStudio2022编译C++20代码的图文步骤》在VisualStudio中启用C++20import功能,需设置语言标准为ISOC++20,开启扫描源查找模块依赖及实验性标... 默认创建Visual Studio桌面控制台项目代码包含C++20的import方法。右键项目的属性:

MySQL中的表连接原理分析

《MySQL中的表连接原理分析》:本文主要介绍MySQL中的表连接原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、环境3、表连接原理【1】驱动表和被驱动表【2】内连接【3】外连接【4编程】嵌套循环连接【5】join buffer4、总结1、背景

MySQL数据库的内嵌函数和联合查询实例代码

《MySQL数据库的内嵌函数和联合查询实例代码》联合查询是一种将多个查询结果组合在一起的方法,通常使用UNION、UNIONALL、INTERSECT和EXCEPT关键字,下面:本文主要介绍MyS... 目录一.数据库的内嵌函数1.1聚合函数COUNT([DISTINCT] expr)SUM([DISTIN

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

Java实现自定义table宽高的示例代码

《Java实现自定义table宽高的示例代码》在桌面应用、管理系统乃至报表工具中,表格(JTable)作为最常用的数据展示组件,不仅承载对数据的增删改查,还需要配合布局与视觉需求,而JavaSwing... 目录一、项目背景详细介绍二、项目需求详细介绍三、相关技术详细介绍四、实现思路详细介绍五、完整实现代码

Java Stream的distinct去重原理分析

《JavaStream的distinct去重原理分析》Javastream中的distinct方法用于去除流中的重复元素,它返回一个包含过滤后唯一元素的新流,该方法会根据元素的hashcode和eq... 目录一、distinct 的基础用法与核心特性二、distinct 的底层实现原理1. 顺序流中的去重

Go语言代码格式化的技巧分享

《Go语言代码格式化的技巧分享》在Go语言的开发过程中,代码格式化是一个看似细微却至关重要的环节,良好的代码格式化不仅能提升代码的可读性,还能促进团队协作,减少因代码风格差异引发的问题,Go在代码格式... 目录一、Go 语言代码格式化的重要性二、Go 语言代码格式化工具:gofmt 与 go fmt(一)

HTML5实现的移动端购物车自动结算功能示例代码

《HTML5实现的移动端购物车自动结算功能示例代码》本文介绍HTML5实现移动端购物车自动结算,通过WebStorage、事件监听、DOM操作等技术,确保实时更新与数据同步,优化性能及无障碍性,提升用... 目录1. 移动端购物车自动结算概述2. 数据存储与状态保存机制2.1 浏览器端的数据存储方式2.1.