本文主要是介绍Pytorch入门——基础知识及实现两层网络,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
Pytorch基础知识
内容来源:
B站视频——最好的PyTorch的入门与实战教程(16小时实战)
import torch
import numpy as nptorch.empty(5,3) # 创建未初始化的矩阵x1 = torch.rand(5,3) # 随机初始化矩阵x2 = torch.zeros(5,3) # 全部为0矩阵x3 = torch.zeros(5,3, dtype=torch.long) # 数据类型变为long
# x3 = torch.zeros(5,3).long() 效果一样x4 = torch.tensor([5.5, 3]) # 从数据直接构建tensorx5 = x4.new_ones(5,3) # 根据已有tensor构建一个tensor,这些方法会重用原来tensor的特征。例如数据类型x6 = x4.new_ones(5,3, dtype=torch.double)torch.rand_like(x5, dtype=torch.float)# 得到tensor的形状
x5.shape
x5.size# 运算
y1 = torch.rand(5,3)
print(y1)
# add
x1 + y1
torch.add(x1, y1)result = torch.empty(5,3)
torch.add(x1, y1, out=result)
print(result) # 把输出作为一个变量# In-place operation
y1.add_(x1) # 把操作保存在y1里面
print(y1)
# 任何in-place运算都会以_结尾。 x.copy_(y) x.t_()会改变x# 各种Numpy的indexing都可以在Pytorch tensor上使用
print(y1[:, 1:]) # 把所有行留下,把第一列之后的留下,相当于第零列舍去
print(y1[1:, 1:]) # 舍弃第零行,第零列# 如果希望resize一个tensor,可以使用torch.view
x7 = torch.randn(4,4)
y2 = x7.view(16) # 变成16维
y3 = x7.view(2,8) # 2x8 matrix
y3 = x7.view(2,-1) # 会自动算出对应的为数,16/2 = 8, 但不能写两个-1
# 要能被16整除,因此出现(-1, 5)会报错# 若只有一个元素的tensor,使用.item()可以把里面的value变成python数值
x8 = torch.randn(1)
print(x8.data) # 仍返回一个tensor
print(x8.grad) # 返回一个grad
print(x8.item()) # 返回一个数字
print(y3.transpose(1, 0)) # 将y3进行转置# 在Numpy和Tensor之间转换
# Torch Tensor 和 Numpy Array 共享内存,改变其中一项另一项也改变
a = torch.ones(5)
b = a.numpy()
b[1] = 2
print(a)# 把Numpy ndarry转成Torch Tensor
c = np.ones(5)
d = torch.from_numpy(c)
np.add(c, 1, out = c)
print(c)
print(d)# CUDA Tensors
if torch.cuda.is_available():device = torch.device("cuda") # a CUDA device objecty = torch.ones_like(x7, device=device) # directly create a tensor on GPUx7 = x7.to(device) # or just use strings ``.to("cuda")``z = x7 + yprint(z)print(z.to("cpu", torch.double)) # ``.to`` can also change dtype together!# numpy是在CPU上操作的
# y.to("cpu").data.numpy()
# y.cpu().data.numpy()
使用Numpy实现两层模型
'''
用numpy实现两层神经网络,一个隐藏层,没有bias,用来从x预测y,使用L2 loss
h = W_1X + b_1
a = max(0,h)
y_hat = w_2a + b_2numpy ndarray 是一个普通的n维array
'''
import numpy as npN, D_in, H, D_out = 64, 1000, 100, 10 # 输入64个变量,输入是1000维,输出10维,中间层H为100维# 随机创建一些训练数据
x = np.random.randn(N, D_in)
y = np.random.randn(N, D_out)w1 = np.random.randn(D_in, H)
w2 = np.random.randn(H, D_out)learning_rate = 1e-6
for t in range(500): # forward passh = x.dot(w1) # N*H 点积h_relu = np.maximum(h, 0) # N*Hy_pred = h_relu.dot(w2) # N*D_out# compute lossloss = np.square(y_pred - y).sum()print(t, loss)# backward pass, compute the gradientgrad_y_pred = 2.0*(y_pred - y)grad_w2 = h_relu.T.dot(grad_y_pred)grad_h_relu = grad_y_pred.dot(w2.T)grad_h = grad_h_relu.copy()grad_h[h<0] = 0grad_w1 = x.T.dot(grad_h)# update weights of w1 and w2w1 -= learning_rate*grad_w1w2 -= learning_rate*grad_w2
使用pytorch实现两层模型
手动实现反向传播及更新
import torchN, D_in, H, D_out = 64, 1000, 100, 10 # 输入64个变量,输入是1000维,输出10维,中间层H为100维# 随机创建一些训练数据
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)w1 = torch.randn(D_in, H)
w2 = torch.randn(H, D_out)learning_rate = 1e-6
for t in range(500): # forward passh = x.mm(w1) # N*H matrix multipulication点积h_relu = h.clamp(min=0) # N*H 类似于夹子,把值夹在min和max之间y_pred = h_relu.mm(w2) # N*D_out# compute lossloss = (y_pred - y).pow(2).sum().item() # 要转成数字print(t, loss)# backward pass, compute the gradientgrad_y_pred = 2.0*(y_pred - y)grad_w2 = h_relu.t().mm(grad_y_pred)grad_h_relu = grad_y_pred.mm(w2.T)grad_h = grad_h_relu.clone()grad_h[h<0] = 0grad_w1 = x.t().mm(grad_h)# update weights of w1 and w2w1 -= learning_rate*grad_w1w2 -= learning_rate*grad_w2
自动实现反向传播
import torchN, D_in, H, D_out = 64, 1000, 100, 10 # 输入64个变量,输入是1000维,输出10维,中间层H为100维# 随机创建一些训练数据
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)w1 = torch.randn(D_in, H, requires_grad=True)
w2 = torch.randn(H, D_out, requires_grad=True)learning_rate = 1e-6
for t in range(500): # forward pass# h = x.mm(w1) # N*H matrix multipulication点积# h_relu = h.clamp(min=0) # N*H 类似于夹子,把值夹在min和max之间y_pred = x.mm(w1).clamp(min=0).mm(w2) # N*D_out# compute lossloss = (y_pred - y).pow(2).sum() #computation graphprint(t, loss.item())# backward pass, compute the gradientloss.backward()# update weights of w1 and w2# 为了不让计算图占内存,不会记住w1和w2的值with torch.no_grad():w1 -= learning_rate*w1.gradw2 -= learning_rate*w2.gradw1.grad.zero_() # 避免多次计算累加导致错误w2.grad.zero_()
使用pytorch的nn库实现两层网络
'''
用nn库来构建网络 neural network
用autograd来构建计算图和计算gradients
'''
import torch
import torch.nn as nnN, D_in, H, D_out = 64, 1000, 100, 10 # 输入64个变量,输入是1000维,输出10维,中间层H为100维# 随机创建一些训练数据
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)model = torch.nn.Sequential(torch.nn.Linear(D_in, H), # w_1*x + b_1torch.nn.ReLU(),torch.nn.Linear(H, D_out)
)# 把初始化变成normal distribution会让模型效果好很多
torch.nn.init.normal_(model[0].weight)
torch.nn.init.normal_(model[2].weight)# model = model.cuda()loss_fn = nn.MSELoss(reduction='sum')learning_rate = 1e-6
for t in range(500): # forward passy_pred = model(x) # model.forward()# compute lossloss = loss_fn(y_pred, y) # computation graphprint(t, loss.item())model.zero_grad() # 将梯度清零避免叠加# backward pass, compute the gradientloss.backward()# update weights of w1 and w2with torch.no_grad():for param in model.parameters():param -= learning_rate*param.grad
使用optim进行自动优化
'''
用nn库来构建网络 neural network
用autograd来构建计算图和计算gradients
'''
import torch
import torch.nn as nnN, D_in, H, D_out = 64, 1000, 100, 10 # 输入64个变量,输入是1000维,输出10维,中间层H为100维# 随机创建一些训练数据
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)model = torch.nn.Sequential(torch.nn.Linear(D_in, H), # w_1*x + b_1torch.nn.ReLU(),torch.nn.Linear(H, D_out)
)# model = model.cuda()loss_fn = nn.MSELoss(reduction='sum')
learning_rate = 1e-4
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
# Adam 的学习率一般在1e-3到1e-4
# 若用SGD,则需要把初始值做一下nomalization,不知道为什么,但是loss会变得很小,玄学for t in range(500): # forward passy_pred = model(x) # model.forward()# compute lossloss = loss_fn(y_pred, y) # computation graphprint(t, loss.item())optimizer.zero_grad() # 将梯度清零避免叠加# backward pass, compute the gradientloss.backward()# update model parametersoptimizer.step() # optimizer会更新
使用自定义神经网络
'''
用nn库来构建网络 neural network
用autograd来构建计算图和计算gradients
'''
import torch
import torch.nn as nnN, D_in, H, D_out = 64, 1000, 100, 10 # 输入64个变量,输入是1000维,输出10维,中间层H为100维# 随机创建一些训练数据
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)# 把所有的module写在__init__里面,把每一个有导数的层放在init里面,在init里面定义模型的框架
class TwoLayerNet(torch.nn.Module):def __init__(self, D_in, H, D_out):super(TwoLayerNet, self).__init__()self.linear1 = torch.nn.Linear(D_in, H, bias=False)self.linear2 = torch.nn.Linear(H, D_out, bias=False)def forward(self, x): # 前向传播的过程y_pred = self.linear2(self.linear1(x).clamp(min=0))return y_predmodel = TwoLayerNet(D_in, H, D_out)loss_fn = nn.MSELoss(reduction='sum')
learning_rate = 1e-4
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
# Adam 的学习率一般在1e-3到1e-4
# 若用SGD,则需要把初始值做一下nomalization,不知道为什么,但是loss会变得很小,玄学for t in range(500): # forward passy_pred = model(x) # model.forward()# compute lossloss = loss_fn(y_pred, y) # computation graphprint(t, loss.item())optimizer.zero_grad() # 将梯度清零避免叠加# backward pass, compute the gradientloss.backward()# update model parametersoptimizer.step() # optimizer会更新
这篇关于Pytorch入门——基础知识及实现两层网络的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!