Pytorch入门——基础知识及实现两层网络

2024-01-24 19:48

本文主要是介绍Pytorch入门——基础知识及实现两层网络,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Pytorch基础知识

内容来源:
B站视频——最好的PyTorch的入门与实战教程(16小时实战)

import torch
import numpy as nptorch.empty(5,3)  # 创建未初始化的矩阵x1 = torch.rand(5,3)  # 随机初始化矩阵x2 = torch.zeros(5,3)  # 全部为0矩阵x3 = torch.zeros(5,3, dtype=torch.long)  # 数据类型变为long
# x3 = torch.zeros(5,3).long() 效果一样x4 = torch.tensor([5.5, 3])  # 从数据直接构建tensorx5 = x4.new_ones(5,3)  # 根据已有tensor构建一个tensor,这些方法会重用原来tensor的特征。例如数据类型x6 = x4.new_ones(5,3, dtype=torch.double)torch.rand_like(x5, dtype=torch.float)# 得到tensor的形状
x5.shape
x5.size# 运算
y1 = torch.rand(5,3)
print(y1)
# add
x1 + y1
torch.add(x1, y1)result = torch.empty(5,3)
torch.add(x1, y1, out=result)
print(result)  # 把输出作为一个变量# In-place operation
y1.add_(x1)  # 把操作保存在y1里面
print(y1)
# 任何in-place运算都会以_结尾。  x.copy_(y)   x.t_()会改变x# 各种Numpy的indexing都可以在Pytorch tensor上使用
print(y1[:, 1:])  # 把所有行留下,把第一列之后的留下,相当于第零列舍去
print(y1[1:, 1:])  # 舍弃第零行,第零列# 如果希望resize一个tensor,可以使用torch.view
x7 = torch.randn(4,4)
y2 = x7.view(16)  # 变成16维
y3 = x7.view(2,8)  # 2x8 matrix
y3 = x7.view(2,-1)  # 会自动算出对应的为数,16/2 = 8, 但不能写两个-1
# 要能被16整除,因此出现(-1, 5)会报错# 若只有一个元素的tensor,使用.item()可以把里面的value变成python数值
x8 = torch.randn(1)
print(x8.data)  # 仍返回一个tensor
print(x8.grad)  # 返回一个grad
print(x8.item())  # 返回一个数字
print(y3.transpose(1, 0))  # 将y3进行转置# 在Numpy和Tensor之间转换
# Torch Tensor 和 Numpy Array 共享内存,改变其中一项另一项也改变
a = torch.ones(5)
b = a.numpy()
b[1] = 2
print(a)# 把Numpy ndarry转成Torch Tensor
c = np.ones(5)
d = torch.from_numpy(c)
np.add(c, 1, out = c)
print(c)
print(d)# CUDA Tensors
if torch.cuda.is_available():device = torch.device("cuda")          # a CUDA device objecty = torch.ones_like(x7, device=device)  # directly create a tensor on GPUx7 = x7.to(device)                       # or just use strings ``.to("cuda")``z = x7 + yprint(z)print(z.to("cpu", torch.double))       # ``.to`` can also change dtype together!# numpy是在CPU上操作的
# y.to("cpu").data.numpy()
# y.cpu().data.numpy()

使用Numpy实现两层模型

'''
用numpy实现两层神经网络,一个隐藏层,没有bias,用来从x预测y,使用L2 loss
h = W_1X + b_1
a = max(0,h)
y_hat = w_2a + b_2numpy ndarray 是一个普通的n维array
'''
import numpy as npN, D_in, H, D_out = 64, 1000, 100, 10  # 输入64个变量,输入是1000维,输出10维,中间层H为100维# 随机创建一些训练数据
x = np.random.randn(N, D_in)
y = np.random.randn(N, D_out)w1 = np.random.randn(D_in, H)
w2 = np.random.randn(H, D_out)learning_rate = 1e-6
for t in range(500):  # forward passh = x.dot(w1)    # N*H  点积h_relu = np.maximum(h, 0)  # N*Hy_pred = h_relu.dot(w2)  # N*D_out# compute lossloss = np.square(y_pred - y).sum()print(t, loss)# backward pass, compute the gradientgrad_y_pred = 2.0*(y_pred - y)grad_w2 = h_relu.T.dot(grad_y_pred)grad_h_relu = grad_y_pred.dot(w2.T)grad_h = grad_h_relu.copy()grad_h[h<0] = 0grad_w1 = x.T.dot(grad_h)# update weights of w1 and w2w1 -= learning_rate*grad_w1w2 -= learning_rate*grad_w2

使用pytorch实现两层模型

手动实现反向传播及更新

import torchN, D_in, H, D_out = 64, 1000, 100, 10  # 输入64个变量,输入是1000维,输出10维,中间层H为100维# 随机创建一些训练数据
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)w1 = torch.randn(D_in, H)
w2 = torch.randn(H, D_out)learning_rate = 1e-6
for t in range(500):  # forward passh = x.mm(w1)    # N*H  matrix multipulication点积h_relu = h.clamp(min=0)  # N*H  类似于夹子,把值夹在min和max之间y_pred = h_relu.mm(w2)  # N*D_out# compute lossloss = (y_pred - y).pow(2).sum().item()  # 要转成数字print(t, loss)# backward pass, compute the gradientgrad_y_pred = 2.0*(y_pred - y)grad_w2 = h_relu.t().mm(grad_y_pred)grad_h_relu = grad_y_pred.mm(w2.T)grad_h = grad_h_relu.clone()grad_h[h<0] = 0grad_w1 = x.t().mm(grad_h)# update weights of w1 and w2w1 -= learning_rate*grad_w1w2 -= learning_rate*grad_w2

自动实现反向传播

import torchN, D_in, H, D_out = 64, 1000, 100, 10  # 输入64个变量,输入是1000维,输出10维,中间层H为100维# 随机创建一些训练数据
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)w1 = torch.randn(D_in, H, requires_grad=True)
w2 = torch.randn(H, D_out, requires_grad=True)learning_rate = 1e-6
for t in range(500):  # forward pass# h = x.mm(w1)    # N*H  matrix multipulication点积# h_relu = h.clamp(min=0)  # N*H  类似于夹子,把值夹在min和max之间y_pred = x.mm(w1).clamp(min=0).mm(w2)  # N*D_out# compute lossloss = (y_pred - y).pow(2).sum()  #computation graphprint(t, loss.item())# backward pass, compute the gradientloss.backward()# update weights of w1 and w2# 为了不让计算图占内存,不会记住w1和w2的值with torch.no_grad():w1 -= learning_rate*w1.gradw2 -= learning_rate*w2.gradw1.grad.zero_()  # 避免多次计算累加导致错误w2.grad.zero_()

使用pytorch的nn库实现两层网络

'''
用nn库来构建网络 neural network
用autograd来构建计算图和计算gradients
'''
import torch
import torch.nn as nnN, D_in, H, D_out = 64, 1000, 100, 10  # 输入64个变量,输入是1000维,输出10维,中间层H为100维# 随机创建一些训练数据
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)model = torch.nn.Sequential(torch.nn.Linear(D_in, H),  # w_1*x + b_1torch.nn.ReLU(),torch.nn.Linear(H, D_out)
)# 把初始化变成normal distribution会让模型效果好很多
torch.nn.init.normal_(model[0].weight)
torch.nn.init.normal_(model[2].weight)# model = model.cuda()loss_fn = nn.MSELoss(reduction='sum')learning_rate = 1e-6
for t in range(500):  # forward passy_pred = model(x)  # model.forward()# compute lossloss = loss_fn(y_pred, y)  # computation graphprint(t, loss.item())model.zero_grad()  # 将梯度清零避免叠加# backward pass, compute the gradientloss.backward()# update weights of w1 and w2with torch.no_grad():for param in model.parameters():param -= learning_rate*param.grad

使用optim进行自动优化

'''
用nn库来构建网络 neural network
用autograd来构建计算图和计算gradients
'''
import torch
import torch.nn as nnN, D_in, H, D_out = 64, 1000, 100, 10  # 输入64个变量,输入是1000维,输出10维,中间层H为100维# 随机创建一些训练数据
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)model = torch.nn.Sequential(torch.nn.Linear(D_in, H),  # w_1*x + b_1torch.nn.ReLU(),torch.nn.Linear(H, D_out)
)# model = model.cuda()loss_fn = nn.MSELoss(reduction='sum')
learning_rate = 1e-4
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
# Adam 的学习率一般在1e-3到1e-4
# 若用SGD,则需要把初始值做一下nomalization,不知道为什么,但是loss会变得很小,玄学for t in range(500):  # forward passy_pred = model(x)  # model.forward()# compute lossloss = loss_fn(y_pred, y)  # computation graphprint(t, loss.item())optimizer.zero_grad()  # 将梯度清零避免叠加# backward pass, compute the gradientloss.backward()# update model parametersoptimizer.step()  # optimizer会更新

使用自定义神经网络

'''
用nn库来构建网络 neural network
用autograd来构建计算图和计算gradients
'''
import torch
import torch.nn as nnN, D_in, H, D_out = 64, 1000, 100, 10  # 输入64个变量,输入是1000维,输出10维,中间层H为100维# 随机创建一些训练数据
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)# 把所有的module写在__init__里面,把每一个有导数的层放在init里面,在init里面定义模型的框架
class TwoLayerNet(torch.nn.Module):def __init__(self, D_in, H, D_out):super(TwoLayerNet, self).__init__()self.linear1 = torch.nn.Linear(D_in, H, bias=False)self.linear2 = torch.nn.Linear(H, D_out, bias=False)def forward(self, x):  # 前向传播的过程y_pred = self.linear2(self.linear1(x).clamp(min=0))return y_predmodel = TwoLayerNet(D_in, H, D_out)loss_fn = nn.MSELoss(reduction='sum')
learning_rate = 1e-4
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
# Adam 的学习率一般在1e-3到1e-4
# 若用SGD,则需要把初始值做一下nomalization,不知道为什么,但是loss会变得很小,玄学for t in range(500):  # forward passy_pred = model(x)  # model.forward()# compute lossloss = loss_fn(y_pred, y)  # computation graphprint(t, loss.item())optimizer.zero_grad()  # 将梯度清零避免叠加# backward pass, compute the gradientloss.backward()# update model parametersoptimizer.step()  # optimizer会更新

这篇关于Pytorch入门——基础知识及实现两层网络的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/640814

相关文章

python实现svg图片转换为png和gif

《python实现svg图片转换为png和gif》这篇文章主要为大家详细介绍了python如何实现将svg图片格式转换为png和gif,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录python实现svg图片转换为png和gifpython实现图片格式之间的相互转换延展:基于Py

Python利用ElementTree实现快速解析XML文件

《Python利用ElementTree实现快速解析XML文件》ElementTree是Python标准库的一部分,而且是Python标准库中用于解析和操作XML数据的模块,下面小编就来和大家详细讲讲... 目录一、XML文件解析到底有多重要二、ElementTree快速入门1. 加载XML的两种方式2.

Java的栈与队列实现代码解析

《Java的栈与队列实现代码解析》栈是常见的线性数据结构,栈的特点是以先进后出的形式,后进先出,先进后出,分为栈底和栈顶,栈应用于内存的分配,表达式求值,存储临时的数据和方法的调用等,本文给大家介绍J... 目录栈的概念(Stack)栈的实现代码队列(Queue)模拟实现队列(双链表实现)循环队列(循环数组

C++如何通过Qt反射机制实现数据类序列化

《C++如何通过Qt反射机制实现数据类序列化》在C++工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作,所以本文就来聊聊C++如何通过Qt反射机制实现数据类序列化吧... 目录设计预期设计思路代码实现使用方法在 C++ 工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作。由于数据类

Python实现图片分割的多种方法总结

《Python实现图片分割的多种方法总结》图片分割是图像处理中的一个重要任务,它的目标是将图像划分为多个区域或者对象,本文为大家整理了一些常用的分割方法,大家可以根据需求自行选择... 目录1. 基于传统图像处理的分割方法(1) 使用固定阈值分割图片(2) 自适应阈值分割(3) 使用图像边缘检测分割(4)

Android实现在线预览office文档的示例详解

《Android实现在线预览office文档的示例详解》在移动端展示在线Office文档(如Word、Excel、PPT)是一项常见需求,这篇文章为大家重点介绍了两种方案的实现方法,希望对大家有一定的... 目录一、项目概述二、相关技术知识三、实现思路3.1 方案一:WebView + Office Onl

C# foreach 循环中获取索引的实现方式

《C#foreach循环中获取索引的实现方式》:本文主要介绍C#foreach循环中获取索引的实现方式,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、手动维护索引变量二、LINQ Select + 元组解构三、扩展方法封装索引四、使用 for 循环替代

Spring Security+JWT如何实现前后端分离权限控制

《SpringSecurity+JWT如何实现前后端分离权限控制》本篇将手把手教你用SpringSecurity+JWT搭建一套完整的登录认证与权限控制体系,具有很好的参考价值,希望对大家... 目录Spring Security+JWT实现前后端分离权限控制实战一、为什么要用 JWT?二、JWT 基本结构

Java实现优雅日期处理的方案详解

《Java实现优雅日期处理的方案详解》在我们的日常工作中,需要经常处理各种格式,各种类似的的日期或者时间,下面我们就来看看如何使用java处理这样的日期问题吧,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言一、日期的坑1.1 日期格式化陷阱1.2 时区转换二、优雅方案的进阶之路2.1 线程安全重构2

Android实现两台手机屏幕共享和远程控制功能

《Android实现两台手机屏幕共享和远程控制功能》在远程协助、在线教学、技术支持等多种场景下,实时获得另一部移动设备的屏幕画面,并对其进行操作,具有极高的应用价值,本项目旨在实现两台Android手... 目录一、项目概述二、相关知识2.1 MediaProjection API2.2 Socket 网络