【Linux】gcc中__builtin_expect的作用

2024-01-24 14:52
文章标签 作用 linux gcc expect builtin

本文主要是介绍【Linux】gcc中__builtin_expect的作用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文首发于 慕雪的寒舍

引入

代码学习的时候,遇到了__builtin_expect这个之前从来没有遇到过的东西,网上搜了一下,发现纯C语言实现的GCD(Grand Central Dispatch)中就有定义过这个宏

#define _safe_cast_to_long(x) \({ _Static_assert(sizeof(typeof(x)) <= sizeof(long), \"__builtin_expect doesn't support types wider than long"); \(long)(x); })
#define fastpath(x) ((typeof(x))__builtin_expect(_safe_cast_to_long(x), ~0l))
#define slowpath(x) ((typeof(x))__builtin_expect(_safe_cast_to_long(x), 0l))
#define likely(x) __builtin_expect(!!(x), 1)
#define unlikely(x) __builtin_expect(!!(x), 0)

我遇到的用法类似末尾的likely和unlikely,刚开始我误解了这个宏的所用,以为它会改变判断条件的结果,但实际上并非如此。

上面源码中的likely和unlikely这两个宏的使用方式如下,其中value是一个判断条件

if(likely(value))  // 等价于 if(value) 只不过value可能为真的可能性更大。
if(unlikely(value))  // 也等价于 if(value) 只不过value可能为假的可能性更大

比如下面的这个代码,其含义是入参PTR这个指针为空的可能性很小,那么编译器就会对这里的分支判断做一定的优化,避免过度的跳转。

	if(unlikey(nullptr==PTR))	{ // 错误处理或者提示 }   									    

那这里是怎么个操作的呢?

指令作用说明

参考:__builtin_expect 总结

这个指令是gcc编译器引入的,指令的写法为:__builtin_expect(EXP, N),意思是:EXP==N的概率很大。

likely和unlikely这两个宏中使用了!!(x)是为了保证返回的结果一定是0或1,而不是一个其他无法和1/0直接比较的表达式。

#define likely(x) __builtin_expect(!!(x), 1)
#define unlikely(x) __builtin_expect(!!(x), 0)

普通分支的汇编

比如我们一个判断条件的分支语句如下所示

#include <stdio.h>
#include <stdbool.h>void function(bool flag)
{if (flag){printf("all good!\n");} else{perror("this is wrong!\n");}
}int main()
{function(true);function(false);return 0;
}

那么默认情况下,编译器将这个代码编译成汇编的时候,也会按顺序进行处理。使用如下命令将test.c源文件生成出汇编文件test.s

test:test.cgcc -fprofile-arcs -O2 -c test.cobjdump -d test.o

test.s中的内容如下(省略了一部分,只保留了function部分)

0000000000000000 <function>:0:   48 83 ec 08             sub    $0x8,%rsp4:   40 84 ff                test   %dil,%dil7:   74 27                   je     30 <function+0x30>9:   bf 00 00 00 00          mov    $0x0,%edie:   48 83 05 00 00 00 00    addq   $0x1,0x0(%rip)        # 16 <function+0x16>15:   01 16:   e8 00 00 00 00          callq  1b <function+0x1b>1b:   48 83 05 00 00 00 00    addq   $0x1,0x0(%rip)        # 23 <function+0x23>22:   01 23:   48 83 c4 08             add    $0x8,%rsp27:   c3                      retq   28:   0f 1f 84 00 00 00 00    nopl   0x0(%rax,%rax,1)2f:   00 30:   bf 00 00 00 00          mov    $0x0,%edi35:   48 83 05 00 00 00 00    addq   $0x1,0x0(%rip)        # 3d <function+0x3d>3c:   01 3d:   e8 00 00 00 00          callq  42 <function+0x42>42:   48 83 05 00 00 00 00    addq   $0x1,0x0(%rip)        # 4a <function+0x4a>49:   01 4a:   48 83 c4 08             add    $0x8,%rsp4e:   c3                      retq   4f:   90                      nop

可以看到,这里是先通过je 30 <function+0x30>来判断当前flag是否为假,如果为假则跳到30处执行perror,如果不为假则继续执行callq 1b <function+0x1b>,即printf的打印。

je是一个汇编指令,和jz等价,判断的是运算结果的ZF标记位。对于ZF标记位而言,运算结果不为全0时Z=0,运算结果为全0时Z=1;所以je 30的意思是,如果运算结果为全0,则跳转到30标记处。

   0:   48 83 ec 08             sub    $0x8,%rsp4:   40 84 ff                test   %dil,%dil7:   74 27                   je     30 <function+0x30>

je之前的两个汇编指令操作解析如下:

  • sub是相减操作,使用$0x8位置的值-%rsp的结果,即$0x8 -= %rsp
  • test指令和and指令等价,是按位与操作,但test命令不会改变值,只会改变标记位。但是这里的操作是%dil自己和自己按位与,得到的结果还是他自己……没太看明白什么含义

但是,只从je本身的操作来考虑,这里的流程是这样的

  • je 跳转到30,Z=1的时候跳转到30,运算结果为全0的时候跳转到30,可以理解为flag为0的时候跳转到30(因为30处是perror的打印)
  • Z=0,运算结果不为30的时候,不跳转,继续执行printf的打印

这里为什么说30处是perror的打印呢?因为使用如下汇编命令整理出的test.s文件中可以看到更详细的过程

test:test.cgcc -E test.c -o test.i -O2 && \gcc -S test.i -o test.s -O2 

test.s可以看到,在默认情况下,通过je判断后会跳到.L2处执行perror的调用,或继续往后执行puts即printf的调用。因为它们的顺序和上面获得的汇编一样,所以我认为在上面的汇编中je 30是跳转到执行perror的操作。

function:
.LFB11:.cfi_startproctestb	%dil, %dilje	.L2movl	$.LC0, %edijmp	puts.p2align 4,,10.p2align 3
.L2:movl	$.LC1, %edijmp	perror.cfi_endproc
.LFE11:.size	function, .-function.p2align 4,,15.globl	function_likely.type	function_likely, @function

添加builtin_expect之后的汇编

示例1

上方的代码,在加上__builtin_expect的unlikely和likely之后,新代码如下

void function_likely(bool flag)
{if (likely(flag)){printf("all good!\n");}else{perror("this is wrong!\n");}
}void function_unlikely(bool flag)
{if (unlikely(flag)){printf("all good!\n");}else{perror("this is wrong!\n");}
}

使用相同命令进行编译,得到汇编如下

0000000000000050 <function_likely>:50:   48 83 ec 08             sub    $0x8,%rsp54:   40 84 ff                test   %dil,%dil57:   74 27                   je     80 <function_likely+0x30>59:   bf 00 00 00 00          mov    $0x0,%edi5e:   48 83 05 00 00 00 00    addq   $0x1,0x0(%rip)        # 66 <function_likely+0x16>65:   01 66:   e8 00 00 00 00          callq  6b <function_likely+0x1b>6b:   48 83 05 00 00 00 00    addq   $0x1,0x0(%rip)        # 73 <function_likely+0x23>72:   01 73:   48 83 c4 08             add    $0x8,%rsp77:   c3                      retq   78:   0f 1f 84 00 00 00 00    nopl   0x0(%rax,%rax,1)7f:   00 80:   bf 00 00 00 00          mov    $0x0,%edi85:   48 83 05 00 00 00 00    addq   $0x1,0x0(%rip)        # 8d <function_likely+0x3d>8c:   01 8d:   e8 00 00 00 00          callq  92 <function_likely+0x42>92:   48 83 05 00 00 00 00    addq   $0x1,0x0(%rip)        # 9a <function_likely+0x4a>99:   01 9a:   eb d7                   jmp    73 <function_likely+0x23>9c:   0f 1f 40 00             nopl   0x0(%rax)00000000000000a0 <function_unlikely>:a0:   48 83 ec 08             sub    $0x8,%rspa4:   40 84 ff                test   %dil,%dila7:   75 27                   jne    d0 <function_unlikely+0x30>a9:   bf 00 00 00 00          mov    $0x0,%ediae:   48 83 05 00 00 00 00    addq   $0x1,0x0(%rip)        # b6 <function_unlikely+0x16>b5:   01 b6:   e8 00 00 00 00          callq  bb <function_unlikely+0x1b>bb:   48 83 05 00 00 00 00    addq   $0x1,0x0(%rip)        # c3 <function_unlikely+0x23>c2:   01 c3:   48 83 c4 08             add    $0x8,%rspc7:   c3                      retq   c8:   0f 1f 84 00 00 00 00    nopl   0x0(%rax,%rax,1)cf:   00 d0:   bf 00 00 00 00          mov    $0x0,%edid5:   48 83 05 00 00 00 00    addq   $0x1,0x0(%rip)        # dd <function_unlikely+0x3d>dc:   01 dd:   e8 00 00 00 00          callq  e2 <function_unlikely+0x42>e2:   48 83 05 00 00 00 00    addq   $0x1,0x0(%rip)        # ea <function_unlikely+0x4a>e9:   01 ea:   eb d7                   jmp    c3 <function_unlikely+0x23>

可以看到,对于function_likely中likely括起来的flag判断,是认为flag大概率为真,所以其进行的是je判断;而对于unlikely括起来的操作,认为flag大概率为假,所以用的是jne进行判断

je和jne功能相反,都是判断ZF标记位

  • je:ZF=1的时候跳转
  • jne:ZF=0的时候跳转

示例2

上面的例子用的printf和perror库函数,我们不太好观察到二者的差别,改成如下代码再次进行测试,能更明显的看到二者优化后的不同。

#include <stdio.h>
#include <stdbool.h>#define likely(x) __builtin_expect(!!(x), 1)
#define unlikely(x) __builtin_expect(!!(x), 0)int test_likely(int x)
{if(likely(x)){x = 5;}else{x = 6;}return x;
}int test_unlikely(int x)
{if(unlikely(x)){x = 5;}else{x = 6;}return x;
}int main()
{test_likely(1);test_likely(0);return 0;
}

使用相同命令进行编译

main:main.cgcc -fprofile-arcs -O2 -c main.cobjdump -d main.o

得到汇编输出如下

0000000000000000 <test_likely>:0:   48 83 05 00 00 00 00    addq   $0x1,0x0(%rip)        # 8 <test_likely+0x8>7:   01 8:   b8 05 00 00 00          mov    $0x5,%eaxd:   85 ff                   test   %edi,%edif:   74 07                   je     18 <test_likely+0x18>11:   c3                      retq   12:   66 0f 1f 44 00 00       nopw   0x0(%rax,%rax,1)18:   48 83 05 00 00 00 00    addq   $0x1,0x0(%rip)        # 20 <test_likely+0x20>1f:   01 20:   b8 06 00 00 00          mov    $0x6,%eax25:   c3                      retq   26:   66 2e 0f 1f 84 00 00    nopw   %cs:0x0(%rax,%rax,1)2d:   00 00 00 0000000000000030 <test_unlikely>:30:   85 ff                   test   %edi,%edi32:   75 14                   jne    48 <test_unlikely+0x18>34:   48 83 05 00 00 00 00    addq   $0x1,0x0(%rip)        # 3c <test_unlikely+0xc>3b:   01 3c:   b8 06 00 00 00          mov    $0x6,%eax41:   c3                      retq   42:   66 0f 1f 44 00 00       nopw   0x0(%rax,%rax,1)48:   48 83 05 00 00 00 00    addq   $0x1,0x0(%rip)        # 50 <test_unlikely+0x20>4f:   01 50:   b8 05 00 00 00          mov    $0x5,%eax55:   c3                      retq   

在这个例子中可以很明显的观察到,对于likely的函数操作,je后紧跟着的是

  11:   c3                      retq   12:   66 0f 1f 44 00 00       nopw   0x0(%rax,%rax,1)

而对于unlikely操作中,jne后面紧跟着的是

  34:   48 83 05 00 00 00 00    addq   $0x1,0x0(%rip)        # 3c <test_unlikely+0xc>3b:   01 3c:   b8 06 00 00 00          mov    $0x6,%eax

两个操作的顺序正好倒过来了,符合优化的预期!

结论

通过上面的两个例子,__builtin_expect的优化作用就体现出来了

  • 当我们认为flag大概率为假的时候,使用jne判断为真的情况,如果是真才跳转。为假继续往后执行;
  • 如果我们认为flag大概率为真的时候,使用je判断为假的情况,如果是假才进行跳转。为真继续往后执行;

相比于直接往后执行汇编,跳转是需要一定消耗的!使用该宏进行优化后,编译器会把更有可能执行的操作放在判断语句之后,避免多次跳转产生的消耗

// if(unlikely(flag)) // B更有可能执行,flag更大概率为假
if(likely(flag)) // A更有可能执行,flag更大概率为真
{//A
}
else
{//B
}

再用上面这个简单的demo来说明一下:

  • 使用likely进行flag判断的时候,汇编语句中会使用je判断,并把A紧跟着je判断之后;
  • 使用unlikey进行flag判断的时候,汇编语句中会使用jne判断,并把B紧跟着jne判断之后;

因为依照更有可能发生的情况来生成不同的汇编代码,减少了跳转次数,自然优化了性能!你看明白了吗?

好得很

这篇关于【Linux】gcc中__builtin_expect的作用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/640038

相关文章

Linux内核参数配置与验证详细指南

《Linux内核参数配置与验证详细指南》在Linux系统运维和性能优化中,内核参数(sysctl)的配置至关重要,本文主要来聊聊如何配置与验证这些Linux内核参数,希望对大家有一定的帮助... 目录1. 引言2. 内核参数的作用3. 如何设置内核参数3.1 临时设置(重启失效)3.2 永久设置(重启仍生效

kali linux 无法登录root的问题及解决方法

《kalilinux无法登录root的问题及解决方法》:本文主要介绍kalilinux无法登录root的问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,... 目录kali linux 无法登录root1、问题描述1.1、本地登录root1.2、ssh远程登录root2、

Linux ls命令操作详解

《Linuxls命令操作详解》通过ls命令,我们可以查看指定目录下的文件和子目录,并结合不同的选项获取详细的文件信息,如权限、大小、修改时间等,:本文主要介绍Linuxls命令详解,需要的朋友可... 目录1. 命令简介2. 命令的基本语法和用法2.1 语法格式2.2 使用示例2.2.1 列出当前目录下的文

Spring Boot项目部署命令java -jar的各种参数及作用详解

《SpringBoot项目部署命令java-jar的各种参数及作用详解》:本文主要介绍SpringBoot项目部署命令java-jar的各种参数及作用的相关资料,包括设置内存大小、垃圾回收... 目录前言一、基础命令结构二、常见的 Java 命令参数1. 设置内存大小2. 配置垃圾回收器3. 配置线程栈大小

Linux中的计划任务(crontab)使用方式

《Linux中的计划任务(crontab)使用方式》:本文主要介绍Linux中的计划任务(crontab)使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、前言1、linux的起源与发展2、什么是计划任务(crontab)二、crontab基础1、cro

Linux换行符的使用方法详解

《Linux换行符的使用方法详解》本文介绍了Linux中常用的换行符LF及其在文件中的表示,展示了如何使用sed命令替换换行符,并列举了与换行符处理相关的Linux命令,通过代码讲解的非常详细,需要的... 目录简介检测文件中的换行符使用 cat -A 查看换行符使用 od -c 检查字符换行符格式转换将

Java编译生成多个.class文件的原理和作用

《Java编译生成多个.class文件的原理和作用》作为一名经验丰富的开发者,在Java项目中执行编译后,可能会发现一个.java源文件有时会产生多个.class文件,从技术实现层面详细剖析这一现象... 目录一、内部类机制与.class文件生成成员内部类(常规内部类)局部内部类(方法内部类)匿名内部类二、

Linux系统配置NAT网络模式的详细步骤(附图文)

《Linux系统配置NAT网络模式的详细步骤(附图文)》本文详细指导如何在VMware环境下配置NAT网络模式,包括设置主机和虚拟机的IP地址、网关,以及针对Linux和Windows系统的具体步骤,... 目录一、配置NAT网络模式二、设置虚拟机交换机网关2.1 打开虚拟机2.2 管理员授权2.3 设置子

Linux系统中卸载与安装JDK的详细教程

《Linux系统中卸载与安装JDK的详细教程》本文详细介绍了如何在Linux系统中通过Xshell和Xftp工具连接与传输文件,然后进行JDK的安装与卸载,安装步骤包括连接Linux、传输JDK安装包... 目录1、卸载1.1 linux删除自带的JDK1.2 Linux上卸载自己安装的JDK2、安装2.1

Linux卸载自带jdk并安装新jdk版本的图文教程

《Linux卸载自带jdk并安装新jdk版本的图文教程》在Linux系统中,有时需要卸载预装的OpenJDK并安装特定版本的JDK,例如JDK1.8,所以本文给大家详细介绍了Linux卸载自带jdk并... 目录Ⅰ、卸载自带jdkⅡ、安装新版jdkⅠ、卸载自带jdk1、输入命令查看旧jdkrpm -qa