【Linux】gcc中__builtin_expect的作用

2024-01-24 14:52
文章标签 作用 linux gcc expect builtin

本文主要是介绍【Linux】gcc中__builtin_expect的作用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文首发于 慕雪的寒舍

引入

代码学习的时候,遇到了__builtin_expect这个之前从来没有遇到过的东西,网上搜了一下,发现纯C语言实现的GCD(Grand Central Dispatch)中就有定义过这个宏

#define _safe_cast_to_long(x) \({ _Static_assert(sizeof(typeof(x)) <= sizeof(long), \"__builtin_expect doesn't support types wider than long"); \(long)(x); })
#define fastpath(x) ((typeof(x))__builtin_expect(_safe_cast_to_long(x), ~0l))
#define slowpath(x) ((typeof(x))__builtin_expect(_safe_cast_to_long(x), 0l))
#define likely(x) __builtin_expect(!!(x), 1)
#define unlikely(x) __builtin_expect(!!(x), 0)

我遇到的用法类似末尾的likely和unlikely,刚开始我误解了这个宏的所用,以为它会改变判断条件的结果,但实际上并非如此。

上面源码中的likely和unlikely这两个宏的使用方式如下,其中value是一个判断条件

if(likely(value))  // 等价于 if(value) 只不过value可能为真的可能性更大。
if(unlikely(value))  // 也等价于 if(value) 只不过value可能为假的可能性更大

比如下面的这个代码,其含义是入参PTR这个指针为空的可能性很小,那么编译器就会对这里的分支判断做一定的优化,避免过度的跳转。

	if(unlikey(nullptr==PTR))	{ // 错误处理或者提示 }   									    

那这里是怎么个操作的呢?

指令作用说明

参考:__builtin_expect 总结

这个指令是gcc编译器引入的,指令的写法为:__builtin_expect(EXP, N),意思是:EXP==N的概率很大。

likely和unlikely这两个宏中使用了!!(x)是为了保证返回的结果一定是0或1,而不是一个其他无法和1/0直接比较的表达式。

#define likely(x) __builtin_expect(!!(x), 1)
#define unlikely(x) __builtin_expect(!!(x), 0)

普通分支的汇编

比如我们一个判断条件的分支语句如下所示

#include <stdio.h>
#include <stdbool.h>void function(bool flag)
{if (flag){printf("all good!\n");} else{perror("this is wrong!\n");}
}int main()
{function(true);function(false);return 0;
}

那么默认情况下,编译器将这个代码编译成汇编的时候,也会按顺序进行处理。使用如下命令将test.c源文件生成出汇编文件test.s

test:test.cgcc -fprofile-arcs -O2 -c test.cobjdump -d test.o

test.s中的内容如下(省略了一部分,只保留了function部分)

0000000000000000 <function>:0:   48 83 ec 08             sub    $0x8,%rsp4:   40 84 ff                test   %dil,%dil7:   74 27                   je     30 <function+0x30>9:   bf 00 00 00 00          mov    $0x0,%edie:   48 83 05 00 00 00 00    addq   $0x1,0x0(%rip)        # 16 <function+0x16>15:   01 16:   e8 00 00 00 00          callq  1b <function+0x1b>1b:   48 83 05 00 00 00 00    addq   $0x1,0x0(%rip)        # 23 <function+0x23>22:   01 23:   48 83 c4 08             add    $0x8,%rsp27:   c3                      retq   28:   0f 1f 84 00 00 00 00    nopl   0x0(%rax,%rax,1)2f:   00 30:   bf 00 00 00 00          mov    $0x0,%edi35:   48 83 05 00 00 00 00    addq   $0x1,0x0(%rip)        # 3d <function+0x3d>3c:   01 3d:   e8 00 00 00 00          callq  42 <function+0x42>42:   48 83 05 00 00 00 00    addq   $0x1,0x0(%rip)        # 4a <function+0x4a>49:   01 4a:   48 83 c4 08             add    $0x8,%rsp4e:   c3                      retq   4f:   90                      nop

可以看到,这里是先通过je 30 <function+0x30>来判断当前flag是否为假,如果为假则跳到30处执行perror,如果不为假则继续执行callq 1b <function+0x1b>,即printf的打印。

je是一个汇编指令,和jz等价,判断的是运算结果的ZF标记位。对于ZF标记位而言,运算结果不为全0时Z=0,运算结果为全0时Z=1;所以je 30的意思是,如果运算结果为全0,则跳转到30标记处。

   0:   48 83 ec 08             sub    $0x8,%rsp4:   40 84 ff                test   %dil,%dil7:   74 27                   je     30 <function+0x30>

je之前的两个汇编指令操作解析如下:

  • sub是相减操作,使用$0x8位置的值-%rsp的结果,即$0x8 -= %rsp
  • test指令和and指令等价,是按位与操作,但test命令不会改变值,只会改变标记位。但是这里的操作是%dil自己和自己按位与,得到的结果还是他自己……没太看明白什么含义

但是,只从je本身的操作来考虑,这里的流程是这样的

  • je 跳转到30,Z=1的时候跳转到30,运算结果为全0的时候跳转到30,可以理解为flag为0的时候跳转到30(因为30处是perror的打印)
  • Z=0,运算结果不为30的时候,不跳转,继续执行printf的打印

这里为什么说30处是perror的打印呢?因为使用如下汇编命令整理出的test.s文件中可以看到更详细的过程

test:test.cgcc -E test.c -o test.i -O2 && \gcc -S test.i -o test.s -O2 

test.s可以看到,在默认情况下,通过je判断后会跳到.L2处执行perror的调用,或继续往后执行puts即printf的调用。因为它们的顺序和上面获得的汇编一样,所以我认为在上面的汇编中je 30是跳转到执行perror的操作。

function:
.LFB11:.cfi_startproctestb	%dil, %dilje	.L2movl	$.LC0, %edijmp	puts.p2align 4,,10.p2align 3
.L2:movl	$.LC1, %edijmp	perror.cfi_endproc
.LFE11:.size	function, .-function.p2align 4,,15.globl	function_likely.type	function_likely, @function

添加builtin_expect之后的汇编

示例1

上方的代码,在加上__builtin_expect的unlikely和likely之后,新代码如下

void function_likely(bool flag)
{if (likely(flag)){printf("all good!\n");}else{perror("this is wrong!\n");}
}void function_unlikely(bool flag)
{if (unlikely(flag)){printf("all good!\n");}else{perror("this is wrong!\n");}
}

使用相同命令进行编译,得到汇编如下

0000000000000050 <function_likely>:50:   48 83 ec 08             sub    $0x8,%rsp54:   40 84 ff                test   %dil,%dil57:   74 27                   je     80 <function_likely+0x30>59:   bf 00 00 00 00          mov    $0x0,%edi5e:   48 83 05 00 00 00 00    addq   $0x1,0x0(%rip)        # 66 <function_likely+0x16>65:   01 66:   e8 00 00 00 00          callq  6b <function_likely+0x1b>6b:   48 83 05 00 00 00 00    addq   $0x1,0x0(%rip)        # 73 <function_likely+0x23>72:   01 73:   48 83 c4 08             add    $0x8,%rsp77:   c3                      retq   78:   0f 1f 84 00 00 00 00    nopl   0x0(%rax,%rax,1)7f:   00 80:   bf 00 00 00 00          mov    $0x0,%edi85:   48 83 05 00 00 00 00    addq   $0x1,0x0(%rip)        # 8d <function_likely+0x3d>8c:   01 8d:   e8 00 00 00 00          callq  92 <function_likely+0x42>92:   48 83 05 00 00 00 00    addq   $0x1,0x0(%rip)        # 9a <function_likely+0x4a>99:   01 9a:   eb d7                   jmp    73 <function_likely+0x23>9c:   0f 1f 40 00             nopl   0x0(%rax)00000000000000a0 <function_unlikely>:a0:   48 83 ec 08             sub    $0x8,%rspa4:   40 84 ff                test   %dil,%dila7:   75 27                   jne    d0 <function_unlikely+0x30>a9:   bf 00 00 00 00          mov    $0x0,%ediae:   48 83 05 00 00 00 00    addq   $0x1,0x0(%rip)        # b6 <function_unlikely+0x16>b5:   01 b6:   e8 00 00 00 00          callq  bb <function_unlikely+0x1b>bb:   48 83 05 00 00 00 00    addq   $0x1,0x0(%rip)        # c3 <function_unlikely+0x23>c2:   01 c3:   48 83 c4 08             add    $0x8,%rspc7:   c3                      retq   c8:   0f 1f 84 00 00 00 00    nopl   0x0(%rax,%rax,1)cf:   00 d0:   bf 00 00 00 00          mov    $0x0,%edid5:   48 83 05 00 00 00 00    addq   $0x1,0x0(%rip)        # dd <function_unlikely+0x3d>dc:   01 dd:   e8 00 00 00 00          callq  e2 <function_unlikely+0x42>e2:   48 83 05 00 00 00 00    addq   $0x1,0x0(%rip)        # ea <function_unlikely+0x4a>e9:   01 ea:   eb d7                   jmp    c3 <function_unlikely+0x23>

可以看到,对于function_likely中likely括起来的flag判断,是认为flag大概率为真,所以其进行的是je判断;而对于unlikely括起来的操作,认为flag大概率为假,所以用的是jne进行判断

je和jne功能相反,都是判断ZF标记位

  • je:ZF=1的时候跳转
  • jne:ZF=0的时候跳转

示例2

上面的例子用的printf和perror库函数,我们不太好观察到二者的差别,改成如下代码再次进行测试,能更明显的看到二者优化后的不同。

#include <stdio.h>
#include <stdbool.h>#define likely(x) __builtin_expect(!!(x), 1)
#define unlikely(x) __builtin_expect(!!(x), 0)int test_likely(int x)
{if(likely(x)){x = 5;}else{x = 6;}return x;
}int test_unlikely(int x)
{if(unlikely(x)){x = 5;}else{x = 6;}return x;
}int main()
{test_likely(1);test_likely(0);return 0;
}

使用相同命令进行编译

main:main.cgcc -fprofile-arcs -O2 -c main.cobjdump -d main.o

得到汇编输出如下

0000000000000000 <test_likely>:0:   48 83 05 00 00 00 00    addq   $0x1,0x0(%rip)        # 8 <test_likely+0x8>7:   01 8:   b8 05 00 00 00          mov    $0x5,%eaxd:   85 ff                   test   %edi,%edif:   74 07                   je     18 <test_likely+0x18>11:   c3                      retq   12:   66 0f 1f 44 00 00       nopw   0x0(%rax,%rax,1)18:   48 83 05 00 00 00 00    addq   $0x1,0x0(%rip)        # 20 <test_likely+0x20>1f:   01 20:   b8 06 00 00 00          mov    $0x6,%eax25:   c3                      retq   26:   66 2e 0f 1f 84 00 00    nopw   %cs:0x0(%rax,%rax,1)2d:   00 00 00 0000000000000030 <test_unlikely>:30:   85 ff                   test   %edi,%edi32:   75 14                   jne    48 <test_unlikely+0x18>34:   48 83 05 00 00 00 00    addq   $0x1,0x0(%rip)        # 3c <test_unlikely+0xc>3b:   01 3c:   b8 06 00 00 00          mov    $0x6,%eax41:   c3                      retq   42:   66 0f 1f 44 00 00       nopw   0x0(%rax,%rax,1)48:   48 83 05 00 00 00 00    addq   $0x1,0x0(%rip)        # 50 <test_unlikely+0x20>4f:   01 50:   b8 05 00 00 00          mov    $0x5,%eax55:   c3                      retq   

在这个例子中可以很明显的观察到,对于likely的函数操作,je后紧跟着的是

  11:   c3                      retq   12:   66 0f 1f 44 00 00       nopw   0x0(%rax,%rax,1)

而对于unlikely操作中,jne后面紧跟着的是

  34:   48 83 05 00 00 00 00    addq   $0x1,0x0(%rip)        # 3c <test_unlikely+0xc>3b:   01 3c:   b8 06 00 00 00          mov    $0x6,%eax

两个操作的顺序正好倒过来了,符合优化的预期!

结论

通过上面的两个例子,__builtin_expect的优化作用就体现出来了

  • 当我们认为flag大概率为假的时候,使用jne判断为真的情况,如果是真才跳转。为假继续往后执行;
  • 如果我们认为flag大概率为真的时候,使用je判断为假的情况,如果是假才进行跳转。为真继续往后执行;

相比于直接往后执行汇编,跳转是需要一定消耗的!使用该宏进行优化后,编译器会把更有可能执行的操作放在判断语句之后,避免多次跳转产生的消耗

// if(unlikely(flag)) // B更有可能执行,flag更大概率为假
if(likely(flag)) // A更有可能执行,flag更大概率为真
{//A
}
else
{//B
}

再用上面这个简单的demo来说明一下:

  • 使用likely进行flag判断的时候,汇编语句中会使用je判断,并把A紧跟着je判断之后;
  • 使用unlikey进行flag判断的时候,汇编语句中会使用jne判断,并把B紧跟着jne判断之后;

因为依照更有可能发生的情况来生成不同的汇编代码,减少了跳转次数,自然优化了性能!你看明白了吗?

好得很

这篇关于【Linux】gcc中__builtin_expect的作用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/640038

相关文章

linux-基础知识3

打包和压缩 zip 安装zip软件包 yum -y install zip unzip 压缩打包命令: zip -q -r -d -u 压缩包文件名 目录和文件名列表 -q:不显示命令执行过程-r:递归处理,打包各级子目录和文件-u:把文件增加/替换到压缩包中-d:从压缩包中删除指定的文件 解压:unzip 压缩包名 打包文件 把压缩包从服务器下载到本地 把压缩包上传到服务器(zip

Linux 网络编程 --- 应用层

一、自定义协议和序列化反序列化 代码: 序列化反序列化实现网络版本计算器 二、HTTP协议 1、谈两个简单的预备知识 https://www.baidu.com/ --- 域名 --- 域名解析 --- IP地址 http的端口号为80端口,https的端口号为443 url为统一资源定位符。CSDNhttps://mp.csdn.net/mp_blog/creation/editor

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

Linux_kernel驱动开发11

一、改回nfs方式挂载根文件系统         在产品将要上线之前,需要制作不同类型格式的根文件系统         在产品研发阶段,我们还是需要使用nfs的方式挂载根文件系统         优点:可以直接在上位机中修改文件系统内容,延长EMMC的寿命         【1】重启上位机nfs服务         sudo service nfs-kernel-server resta

【Linux 从基础到进阶】Ansible自动化运维工具使用

Ansible自动化运维工具使用 Ansible 是一款开源的自动化运维工具,采用无代理架构(agentless),基于 SSH 连接进行管理,具有简单易用、灵活强大、可扩展性高等特点。它广泛用于服务器管理、应用部署、配置管理等任务。本文将介绍 Ansible 的安装、基本使用方法及一些实际运维场景中的应用,旨在帮助运维人员快速上手并熟练运用 Ansible。 1. Ansible的核心概念

Linux服务器Java启动脚本

Linux服务器Java启动脚本 1、初版2、优化版本3、常用脚本仓库 本文章介绍了如何在Linux服务器上执行Java并启动jar包, 通常我们会使用nohup直接启动,但是还是需要手动停止然后再次启动, 那如何更优雅的在服务器上启动jar包呢,让我们一起探讨一下吧。 1、初版 第一个版本是常用的做法,直接使用nohup后台启动jar包, 并将日志输出到当前文件夹n

[Linux]:进程(下)

✨✨ 欢迎大家来到贝蒂大讲堂✨✨ 🎈🎈养成好习惯,先赞后看哦~🎈🎈 所属专栏:Linux学习 贝蒂的主页:Betty’s blog 1. 进程终止 1.1 进程退出的场景 进程退出只有以下三种情况: 代码运行完毕,结果正确。代码运行完毕,结果不正确。代码异常终止(进程崩溃)。 1.2 进程退出码 在编程中,我们通常认为main函数是代码的入口,但实际上它只是用户级

【Linux】应用层http协议

一、HTTP协议 1.1 简要介绍一下HTTP        我们在网络的应用层中可以自己定义协议,但是,已经有大佬定义了一些现成的,非常好用的应用层协议,供我们直接使用,HTTP(超文本传输协议)就是其中之一。        在互联网世界中,HTTP(超文本传输协议)是一个至关重要的协议,他定义了客户端(如浏览器)与服务器之间如何进行通信,以交换或者传输超文本(比如HTML文档)。

如何编写Linux PCIe设备驱动器 之二

如何编写Linux PCIe设备驱动器 之二 功能(capability)集功能(capability)APIs通过pci_bus_read_config完成功能存取功能APIs参数pos常量值PCI功能结构 PCI功能IDMSI功能电源功率管理功能 功能(capability)集 功能(capability)APIs int pcie_capability_read_wo