小土堆pytorch学习笔记001

2024-01-23 20:28
文章标签 学习 笔记 pytorch 001 土堆

本文主要是介绍小土堆pytorch学习笔记001,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1、Pytorch环境的配置与安装。

(1)建议安装:Anaconda 

(2)检查显卡:GPU

(3)管理环境(不同版本的pytorch 版本不同):

conda create -n pytorch python=3.6

(4)检测自己的电脑是否可以使用:

2、pytorch编辑器的选择

(1)pycharm (下载社区版)

(2)jupyter (可以交互)

启动本地的jupyter : 

3、为什么torch.cuda.is_available()返回False

(1)检查自己的电脑是否支持GPU(可以用一些电脑管家,eg: 鲁大师等查看)

4、python学习中的两大法宝函数

(1)dir() 函数:打开、看见

(2)help()函数:说明书

# 例子:
torch.cuda.is_available()

5、Pycharm 及Jupyter的使用对比:

Jupyter:(以块为运行单位)

①shift + 回车

# 例子:
print("Start")
a = 'hello world'
b = 2019
c = a + b
print(c)

(1)Pycharm文件

代码是以块为一个整体运行的话;

整改完后,从头开始执行。

python文件的块是所有行的代码。

(2)Pycharm控制台

整改完后,会从错误的地方执行。

以每一行为块,运行的。

(3)Jupyter:

整改完后,从错误的地方开始运行。

以任意行为块运行的。

6、Pytorch加载数据初认识+实战

Dataset:提供一种方式去获取数据及其label。

                ①如何获取每一个数据及其label。

                ②告诉我们总共有多少个数据。

Dataloader:为后面的网络提供不同的数据形式。

step01:下载数据集。

step02:使用数据集,代码如下:

文件夹目录:

from torch.utils.data import Dataset
from PIL import Image
import osclass MyData(Dataset):def __init__(self, root_dir, label_dir):# self.root_dir = 'pytorch_xiaotudui/bee_ant/dataset'# self.label_dir = 'ants'self.root_dir = root_dirself.label_dir = label_dirself.path = os.path.join(self.root_dir, self.label_dir)  # 路径拼接self.img_path = os.listdir(self.path)   # 获取到图片下的所有地址,以列表的形式展示def __getitem__(self, idx):img_name = self.img_path[idx]img_item_path = os.path.join(self.root_dir, self.label_dir, img_name)img = Image.open(img_item_path)label = self.label_dirreturn img, labeldef __len__(self):return len(self.img_path)# 获取蚂蚁的数据集
root_dir_out = 'pytorch_xiaotudui/bee_ant/dataset'
ants_label_dir = 'ants'
ants_dataset = MyData(root_dir_out, ants_label_dir)# 获取蜜蜂的数据集
bees_label_dir = 'bees'
bees_dataset = MyData(root_dir_out, bees_label_dir)# 两个数据集的集合
train_dataset = ants_dataset + bees_dataset  # 蚂蚁数据集在前,蜜蜂数据集在后

 运行结果:

这篇关于小土堆pytorch学习笔记001的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/637420

相关文章

PyTorch使用教程之Tensor包详解

《PyTorch使用教程之Tensor包详解》这篇文章介绍了PyTorch中的张量(Tensor)数据结构,包括张量的数据类型、初始化、常用操作、属性等,张量是PyTorch框架中的核心数据结构,支持... 目录1、张量Tensor2、数据类型3、初始化(构造张量)4、常用操作5、常用属性5.1 存储(st

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

线性代数|机器学习-P36在图中找聚类

文章目录 1. 常见图结构2. 谱聚类 感觉后面几节课的内容跨越太大,需要补充太多的知识点,教授讲得内容跨越较大,一般一节课的内容是书本上的一章节内容,所以看视频比较吃力,需要先预习课本内容后才能够很好的理解教授讲解的知识点。 1. 常见图结构 假设我们有如下图结构: Adjacency Matrix:行和列表示的是节点的位置,A[i,j]表示的第 i 个节点和第 j 个