小土堆pytorch学习笔记001

2024-01-23 20:28
文章标签 学习 笔记 pytorch 001 土堆

本文主要是介绍小土堆pytorch学习笔记001,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1、Pytorch环境的配置与安装。

(1)建议安装:Anaconda 

(2)检查显卡:GPU

(3)管理环境(不同版本的pytorch 版本不同):

conda create -n pytorch python=3.6

(4)检测自己的电脑是否可以使用:

2、pytorch编辑器的选择

(1)pycharm (下载社区版)

(2)jupyter (可以交互)

启动本地的jupyter : 

3、为什么torch.cuda.is_available()返回False

(1)检查自己的电脑是否支持GPU(可以用一些电脑管家,eg: 鲁大师等查看)

4、python学习中的两大法宝函数

(1)dir() 函数:打开、看见

(2)help()函数:说明书

# 例子:
torch.cuda.is_available()

5、Pycharm 及Jupyter的使用对比:

Jupyter:(以块为运行单位)

①shift + 回车

# 例子:
print("Start")
a = 'hello world'
b = 2019
c = a + b
print(c)

(1)Pycharm文件

代码是以块为一个整体运行的话;

整改完后,从头开始执行。

python文件的块是所有行的代码。

(2)Pycharm控制台

整改完后,会从错误的地方执行。

以每一行为块,运行的。

(3)Jupyter:

整改完后,从错误的地方开始运行。

以任意行为块运行的。

6、Pytorch加载数据初认识+实战

Dataset:提供一种方式去获取数据及其label。

                ①如何获取每一个数据及其label。

                ②告诉我们总共有多少个数据。

Dataloader:为后面的网络提供不同的数据形式。

step01:下载数据集。

step02:使用数据集,代码如下:

文件夹目录:

from torch.utils.data import Dataset
from PIL import Image
import osclass MyData(Dataset):def __init__(self, root_dir, label_dir):# self.root_dir = 'pytorch_xiaotudui/bee_ant/dataset'# self.label_dir = 'ants'self.root_dir = root_dirself.label_dir = label_dirself.path = os.path.join(self.root_dir, self.label_dir)  # 路径拼接self.img_path = os.listdir(self.path)   # 获取到图片下的所有地址,以列表的形式展示def __getitem__(self, idx):img_name = self.img_path[idx]img_item_path = os.path.join(self.root_dir, self.label_dir, img_name)img = Image.open(img_item_path)label = self.label_dirreturn img, labeldef __len__(self):return len(self.img_path)# 获取蚂蚁的数据集
root_dir_out = 'pytorch_xiaotudui/bee_ant/dataset'
ants_label_dir = 'ants'
ants_dataset = MyData(root_dir_out, ants_label_dir)# 获取蜜蜂的数据集
bees_label_dir = 'bees'
bees_dataset = MyData(root_dir_out, bees_label_dir)# 两个数据集的集合
train_dataset = ants_dataset + bees_dataset  # 蚂蚁数据集在前,蜜蜂数据集在后

 运行结果:

这篇关于小土堆pytorch学习笔记001的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/637420

相关文章

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

Pytorch介绍与安装过程

《Pytorch介绍与安装过程》PyTorch因其直观的设计、卓越的灵活性以及强大的动态计算图功能,迅速在学术界和工业界获得了广泛认可,成为当前深度学习研究和开发的主流工具之一,本文给大家介绍Pyto... 目录1、Pytorch介绍1.1、核心理念1.2、核心组件与功能1.3、适用场景与优势总结1.4、优

conda安装GPU版pytorch默认却是cpu版本

《conda安装GPU版pytorch默认却是cpu版本》本文主要介绍了遇到Conda安装PyTorchGPU版本却默认安装CPU的问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的... 目录一、问题描述二、网上解决方案罗列【此节为反面方案罗列!!!】三、发现的根本原因[独家]3.1 p

PyTorch中cdist和sum函数使用示例详解

《PyTorch中cdist和sum函数使用示例详解》torch.cdist是PyTorch中用于计算**两个张量之间的成对距离(pairwisedistance)**的函数,常用于点云处理、图神经网... 目录基本语法输出示例1. 简单的 2D 欧几里得距离2. 批量形式(3D Tensor)3. 使用不

PyTorch高级特性与性能优化方式

《PyTorch高级特性与性能优化方式》:本文主要介绍PyTorch高级特性与性能优化方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、自动化机制1.自动微分机制2.动态计算图二、性能优化1.内存管理2.GPU加速3.多GPU训练三、分布式训练1.分布式数据

重新对Java的类加载器的学习方式

《重新对Java的类加载器的学习方式》:本文主要介绍重新对Java的类加载器的学习方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、介绍1.1、简介1.2、符号引用和直接引用1、符号引用2、直接引用3、符号转直接的过程2、加载流程3、类加载的分类3.1、显示

判断PyTorch是GPU版还是CPU版的方法小结

《判断PyTorch是GPU版还是CPU版的方法小结》PyTorch作为当前最流行的深度学习框架之一,支持在CPU和GPU(NVIDIACUDA)上运行,所以对于深度学习开发者来说,正确识别PyTor... 目录前言为什么需要区分GPU和CPU版本?性能差异硬件要求如何检查PyTorch版本?方法1:使用命

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

pytorch自动求梯度autograd的实现

《pytorch自动求梯度autograd的实现》autograd是一个自动微分引擎,它可以自动计算张量的梯度,本文主要介绍了pytorch自动求梯度autograd的实现,具有一定的参考价值,感兴趣... autograd是pytorch构建神经网络的核心。在 PyTorch 中,结合以下代码例子,当你