C++面试:跳表

2024-01-23 11:04
文章标签 c++ 面试 跳表

本文主要是介绍C++面试:跳表,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        

目录

跳表介绍 

跳表的特点:

跳表的应用场景:

C++ 代码示例:

跳表的特性

跳表示例 

总结


        跳表(Skip List)是一种支持快速搜索、插入和删除的数据结构,具有相对简单的实现和较高的查询性能。下面是跳表的详细介绍和一个简单的 C++ 代码示例:

跳表介绍 

跳表的特点:

  1. 有序结构: 跳表中的每个节点都包含一个元素,并且节点按照元素的大小有序排列。
  2. 多层索引: 跳表通过维护多层索引来实现快速搜索。每一层都是一个有序链表,最底层包含所有元素,而每上一层的节点是下一层节点的一部分。
  3. 跳跃式访问: 通过索引层,跳表允许在较高层直接跳过一些节点,从而提高搜索效率。

跳表的应用场景:

  1. 有序集合的实现: 用于需要频繁的插入、删除和搜索操作的有序数据集合,如 Redis 中的有序集合(Sorted Set)。
  2. 替代平衡树: 在某些场景下,跳表可以作为对平衡树的一种替代,具有更简单的实现和较好的性能。

C++ 代码示例:

#include <iostream>
#include <vector>
#include <cstdlib>const int MAX_LEVEL = 16;  // 最大层数// 跳表节点定义
struct Node {int value;std::vector<Node*> forward;  // 每层的指针数组Node(int val, int level) : value(val), forward(level, nullptr) {}
};// 跳表定义
class SkipList {
private:Node* header;  // 头节点int level;     // 当前跳表的最大层数public:SkipList() : level(1) {header = new Node(0, MAX_LEVEL);}// 随机生成一个层数int randomLevel() {int lvl = 1;while ((rand() % 2) && (lvl < MAX_LEVEL))lvl++;return lvl;}// 插入一个元素void insert(int val) {std::vector<Node*> update(MAX_LEVEL, nullptr);Node* current = header;// 从最高层到底层,找到每一层的插入位置for (int i = level - 1; i >= 0; i--) {while (current->forward[i] != nullptr && current->forward[i]->value < val) {current = current->forward[i];}update[i] = current;}// 随机生成一个层数int newLevel = randomLevel();// 如果新的层数比当前层数高,则更新 updateif (newLevel > level) {for (int i = level; i < newLevel; i++) {update[i] = header;}level = newLevel;}// 创建新节点Node* newNode = new Node(val, newLevel);// 更新每一层的指针for (int i = 0; i < newLevel; i++) {newNode->forward[i] = update[i]->forward[i];update[i]->forward[i] = newNode;}}// 搜索一个元素,返回是否存在bool search(int val) {Node* current = header;// 从最高层到底层,搜索每一层的节点for (int i = level - 1; i >= 0; i--) {while (current->forward[i] != nullptr && current->forward[i]->value < val) {current = current->forward[i];}}// 到达底层,判断是否找到目标元素if (current->forward[0] != nullptr && current->forward[0]->value == val) {return true;} else {return false;}}// 删除一个元素void remove(int val) {std::vector<Node*> update(MAX_LEVEL, nullptr);Node* current = header;// 从最高层到底层,找到每一层的删除位置for (int i = level - 1; i >= 0; i--) {while (current->forward[i] != nullptr && current->forward[i]->value < val) {current = current->forward[i];}update[i] = current;}// 到达底层,判断是否找到目标元素if (current->forward[0] != nullptr && current->forward[0]->value == val) {// 更新每一层的指针,删除目标节点for (int i = 0; i < level; i++) {if (update[i]->forward[i] != current->forward[i]) {break;}update[i]->forward[i] = current->forward[i]->forward[i];}// 如果删除的是最高层的节点,更新层数while (level > 1 && header->forward[level - 1] == nullptr) {level--;}// 释放节点内存delete current;}}// 打印跳表void printSkipList() {for (int i = level - 1; i >= 0; i--) {Node* current = header->forward[i];std::cout << "Level " << i << ": ";while (current != nullptr) {std::cout << current->value << " ";current = current->forward[i];}std::cout << std::endl;}std::cout << "-----------------------" << std::endl;}
};int main() {// 创建跳表SkipList skipList;// 插入一些元素skipList.insert(3);skipList.insert(6);skipList.insert(7);skipList.insert(9);skipList.insert(12);// 打印跳表skipList.printSkipList();// 搜索元素int searchValue = 7;if (skipList.search(searchValue)) {std::cout << "Element " << searchValue << " found in the skip list." << std::endl;} else {std::cout << "Element " << searchValue << " not found in the skip list." << std::endl;}// 删除元素int removeValue = 6;skipList.remove(removeValue);// 打印删除后的跳表skipList.printSkipList();return 0;
}

        这是一个简单的跳表实现,包括插入、搜索和删除操作。在实际应用中,跳表的层数、随机层数的方式以及其他细节可以根据具体需求进行调整。

跳表的特性

  1. 有序性: 跳表中的每个节点按照元素的大小有序排列。这使得在跳表中可以快速定位和搜索元素。

  2. 多层索引: 跳表通过维护多层索引来实现快速搜索。每一层都是一个有序链表,最底层包含所有元素,而每一层的节点是下一层节点的子集。这样的多层索引结构可以提高搜索效率。

  3. 跳跃式访问: 通过多层索引,跳表允许在较高层直接跳过一些节点,从而实现跳跃式的访问。这种设计类似于在二分查找中直接跳过一半的元素,从而提高了搜索的效率。

  4. 平衡性: 跳表的设计通过随机层数和灵活的插入策略,保持了跳表的平衡性。这有助于避免类似于二叉搜索树中的不平衡情况,使得操作的时间复杂度更加可控。

  5. 简单实现: 跳表相对于其他高效的数据结构,如平衡树,实现相对简单。它不需要像平衡树那样复杂的平衡维护,使得代码的实现和维护相对容易。

  6. 支持动态操作: 跳表天生适合动态操作,包括插入和删除。由于插入和删除操作只需要调整相邻节点的指针,而不需要进行全局的平衡调整,因此操作的效率较高。

  7. 适应范围广: 跳表可以应用于各种有序数据集合的场景,特别是在需要频繁插入、删除和搜索操作的场景中,其性能表现优异。

        跳表的这些特性使得它在一些应用场景中具有明显的优势,尤其在无法提前知道数据分布情况的情形下,跳表能够以较简单的方式维护有序性和高效操作。

跳表示例 

        下面是一个使用 C++ 实现的跳表例子,包含插入、搜索、删除和打印操作。在这个例子中,我使用了模板类以支持不同类型的元素。

#include <iostream>
#include <vector>
#include <cstdlib>// 跳表节点定义
template <typename T>
struct Node {T value;std::vector<Node*> forward;Node(T val, int level) : value(val), forward(level, nullptr) {}
};// 跳表定义
template <typename T>
class SkipList {
private:Node<T>* header;int level;public:SkipList() : level(1) {header = new Node<T>(T(), MAX_LEVEL);  // 初始值为 T() 的头节点}// 随机生成一个层数int randomLevel() {int lvl = 1;while ((rand() % 2) && (lvl < MAX_LEVEL))lvl++;return lvl;}// 插入一个元素void insert(const T& val) {std::vector<Node<T>*> update(MAX_LEVEL, nullptr);Node<T>* current = header;// 从最高层到底层,找到每一层的插入位置for (int i = level - 1; i >= 0; i--) {while (current->forward[i] != nullptr && current->forward[i]->value < val) {current = current->forward[i];}update[i] = current;}// 随机生成一个层数int newLevel = randomLevel();// 如果新的层数比当前层数高,则更新 updateif (newLevel > level) {for (int i = level; i < newLevel; i++) {update[i] = header;}level = newLevel;}// 创建新节点Node<T>* newNode = new Node<T>(val, newLevel);// 更新每一层的指针for (int i = 0; i < newLevel; i++) {newNode->forward[i] = update[i]->forward[i];update[i]->forward[i] = newNode;}}// 搜索一个元素,返回是否存在bool search(const T& val) const {Node<T>* current = header;// 从最高层到底层,搜索每一层的节点for (int i = level - 1; i >= 0; i--) {while (current->forward[i] != nullptr && current->forward[i]->value < val) {current = current->forward[i];}}// 到达底层,判断是否找到目标元素return (current->forward[0] != nullptr && current->forward[0]->value == val);}// 删除一个元素void remove(const T& val) {std::vector<Node<T>*> update(MAX_LEVEL, nullptr);Node<T>* current = header;// 从最高层到底层,找到每一层的删除位置for (int i = level - 1; i >= 0; i--) {while (current->forward[i] != nullptr && current->forward[i]->value < val) {current = current->forward[i];}update[i] = current;}// 到达底层,判断是否找到目标元素if (current->forward[0] != nullptr && current->forward[0]->value == val) {// 更新每一层的指针,删除目标节点for (int i = 0; i < level; i++) {if (update[i]->forward[i] != current->forward[i]) {break;}update[i]->forward[i] = current->forward[i]->forward[i];}// 如果删除的是最高层的节点,更新层数while (level > 1 && header->forward[level - 1] == nullptr) {level--;}// 释放节点内存delete current;}}// 打印跳表void printSkipList() const {for (int i = level - 1; i >= 0; i--) {Node<T>* current = header->forward[i];std::cout << "Level " << i << ": ";while (current != nullptr) {std::cout << current->value << " ";current = current->forward[i];}std::cout << std::endl;}std::cout << "-----------------------" << std::endl;}
};int main() {// 创建跳表SkipList<int> skipList;// 插入一些元素skipList.insert(3);skipList.insert(6);skipList.insert(7);skipList.insert(9);skipList.insert(12);// 打印跳表skipList.printSkipList();// 搜索元素int searchValue = 7;if (skipList.search(searchValue)) {std::cout << "Element " << searchValue << " found in the skip list." << std::endl;} else {std::cout << "Element " << searchValue << " not found in the skip list." << std::endl;}// 删除元素int removeValue = 6;skipList.remove(removeValue);// 打印删除后的跳表skipList.printSkipList();return 0;
}

在这个例子中,使用跳表有几个考虑因素:

  1. 高效的搜索操作: 跳表的搜索操作时间复杂度为 O(log n),其中 n 是跳表中的元素个数。相较于普通链表的线性搜索,跳表提供了更快的搜索速度。

  2. 支持动态操作: 跳表天生适合动态操作,包括插入和删除。由于插入和删除操作只需要调整相邻节点的指针,而不需要进行全局的平衡调整,因此在元素的动态更新场景下,跳表相对于其他数据结构更具有优势。

  3. 简单实现: 跳表的实现相对简单,不需要像平衡树那样复杂的平衡维护。这使得它在实际应用中更容易实现和维护。

  4. 对比其他数据结构: 在这个示例中,使用跳表的主要目的是演示跳表的基本原理和操作,并不代表它是绝对优于其他数据结构的选择。具体选择数据结构的决策取决于实际应用场景、数据分布情况以及对不同操作的需求。

总结

特性:

  1. 有序性: 跳表中的每个节点按照元素的大小有序排列,使得在跳表中可以快速定位和搜索元素。
  2. 多层索引: 跳表通过维护多层索引来实现快速搜索,每一层都是一个有序链表,最底层包含所有元素。
  3. 跳跃式访问: 通过多层索引,跳表允许在较高层直接跳过一些节点,实现跳跃式的访问,提高搜索效率。
  4. 平衡性: 通过随机层数和灵活的插入策略,保持了跳表的平衡性,避免了类似于二叉搜索树中的不平衡情况。
  5. 支持动态操作: 跳表天生适合动态操作,包括插入和删除,操作的时间复杂度较低。

应用场景:

  1. 有序集合的实现: 适用于需要频繁插入、删除和搜索操作的有序数据集合,例如在 Redis 中的有序集合(Sorted Set)实现中使用了跳表。
  2. 替代平衡树: 在某些场景下,跳表可以作为对平衡树的一种替代,相对简单的实现和较好的性能表现使得它成为一种备选选择。
  3. 动态数据库索引: 在数据库中,跳表可以用作动态索引结构,适用于动态更新和频繁搜索的情况。
  4. 高效的动态排序: 在需要频繁的动态排序操作的场景下,跳表的性能可能优于传统的排序算法。

总体评价:

  • 优势: 跳表提供了一种在有序数据集合中实现高效的动态操作的方式,相较于平衡树结构实现较为简单,适用于需要频繁更新和搜索的场景。
  • 劣势: 跳表相对于其他数据结构可能占用更多内存,对于某些内存敏感的场景,可能不是最优选择。在一些特定的搜索密集型场景中,红黑树等平衡树结构也具有竞争力。

总体而言,跳表在一些动态、搜索密集的应用场景中表现出色,但在具体选择时,需要综合考虑数据分布、内存使用、实现难度等因素。

这篇关于C++面试:跳表的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/636187

相关文章

C++如何通过Qt反射机制实现数据类序列化

《C++如何通过Qt反射机制实现数据类序列化》在C++工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作,所以本文就来聊聊C++如何通过Qt反射机制实现数据类序列化吧... 目录设计预期设计思路代码实现使用方法在 C++ 工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作。由于数据类

Linux下如何使用C++获取硬件信息

《Linux下如何使用C++获取硬件信息》这篇文章主要为大家详细介绍了如何使用C++实现获取CPU,主板,磁盘,BIOS信息等硬件信息,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录方法获取CPU信息:读取"/proc/cpuinfo"文件获取磁盘信息:读取"/proc/diskstats"文

C++使用printf语句实现进制转换的示例代码

《C++使用printf语句实现进制转换的示例代码》在C语言中,printf函数可以直接实现部分进制转换功能,通过格式说明符(formatspecifier)快速输出不同进制的数值,下面给大家分享C+... 目录一、printf 原生支持的进制转换1. 十进制、八进制、十六进制转换2. 显示进制前缀3. 指

数据库面试必备之MySQL中的乐观锁与悲观锁

《数据库面试必备之MySQL中的乐观锁与悲观锁》:本文主要介绍数据库面试必备之MySQL中乐观锁与悲观锁的相关资料,乐观锁适用于读多写少的场景,通过版本号检查避免冲突,而悲观锁适用于写多读少且对数... 目录一、引言二、乐观锁(一)原理(二)应用场景(三)示例代码三、悲观锁(一)原理(二)应用场景(三)示例

C++中初始化二维数组的几种常见方法

《C++中初始化二维数组的几种常见方法》本文详细介绍了在C++中初始化二维数组的不同方式,包括静态初始化、循环、全部为零、部分初始化、std::array和std::vector,以及std::vec... 目录1. 静态初始化2. 使用循环初始化3. 全部初始化为零4. 部分初始化5. 使用 std::a

C++ vector的常见用法超详细讲解

《C++vector的常见用法超详细讲解》:本文主要介绍C++vector的常见用法,包括C++中vector容器的定义、初始化方法、访问元素、常用函数及其时间复杂度,通过代码介绍的非常详细,... 目录1、vector的定义2、vector常用初始化方法1、使编程用花括号直接赋值2、使用圆括号赋值3、ve

如何高效移除C++关联容器中的元素

《如何高效移除C++关联容器中的元素》关联容器和顺序容器有着很大不同,关联容器中的元素是按照关键字来保存和访问的,而顺序容器中的元素是按它们在容器中的位置来顺序保存和访问的,本文介绍了如何高效移除C+... 目录一、简介二、移除给定位置的元素三、移除与特定键值等价的元素四、移除满足特android定条件的元

Python获取C++中返回的char*字段的两种思路

《Python获取C++中返回的char*字段的两种思路》有时候需要获取C++函数中返回来的不定长的char*字符串,本文小编为大家找到了两种解决问题的思路,感兴趣的小伙伴可以跟随小编一起学习一下... 有时候需要获取C++函数中返回来的不定长的char*字符串,目前我找到两种解决问题的思路,具体实现如下:

C++ Sort函数使用场景分析

《C++Sort函数使用场景分析》sort函数是algorithm库下的一个函数,sort函数是不稳定的,即大小相同的元素在排序后相对顺序可能发生改变,如果某些场景需要保持相同元素间的相对顺序,可使... 目录C++ Sort函数详解一、sort函数调用的两种方式二、sort函数使用场景三、sort函数排序

Java调用C++动态库超详细步骤讲解(附源码)

《Java调用C++动态库超详细步骤讲解(附源码)》C语言因其高效和接近硬件的特性,时常会被用在性能要求较高或者需要直接操作硬件的场合,:本文主要介绍Java调用C++动态库的相关资料,文中通过代... 目录一、直接调用C++库第一步:动态库生成(vs2017+qt5.12.10)第二步:Java调用C++