ARM 驱动 1.22

2024-01-23 04:20
文章标签 驱动 arm 1.22

本文主要是介绍ARM 驱动 1.22,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

linux内核等待队列wait_queue_head_t

头文件

  include <linux/wait.h>

定义并初始化

wait_queue_head_t r_wait;

init_waitqueue_head(&cm_dev->r_wait);

wait_queue_head_t 表示等待队列头,等待队列wait时,会导致进程或线程被休眠,一个等待队列头中可以有很多的等待队列元素。每个元素绑定一个进程或者线程。这里绑定进程或者线程的目的,是为了在执行wakeup时,知道应该唤醒谁。

Linux 字符设备驱动开发基础——read()、write() 相关函数解析

Linux字符设备驱动中,用户程序使用read()write() 相关函数时,内核会调用驱动程序中的的file_operations结构体中对应的read()write()函数。

file_operations,其是一个函数指针的集合,用于存放我们定义的用于操作设备的函数的指针,如果我们不定义,它默认保留为NULL。其中有最重要的几个函数,分别是open()read()write()ioctl(),下面分别对其进行解析。

1. 打开和关闭设备函数

(1)打开设备

int (*open) (struct inode *, struct file *);

在操作设备前必须先调用open函数打开文件,可以干一些需要的初始化操作。当然,如果不实现这个函数的话,驱动会默认设备的打开永远成功。打开成功时open返回0。

(2)关闭设备

int (*release) (struct inode *, struct file *);

当设备文件被关闭时内核会调用这个操作,当然这也可以不实现,函数默认为NULL。关闭设备永远成功。

2. read()、write() 函数

2.1 read() 函数

函数原型:

<span style="color:#000000"><span style="background-color:#282c34"><code class="language-c">ssize_t <span style="color:#999999">(</span><span style="color:#669900">*</span>read<span style="color:#999999">)</span> <span style="color:#999999">(</span><span style="color:#c678dd">struct</span> file <span style="color:#669900">*</span>filp<span style="color:#999999">,</span> <span style="color:#c678dd">char</span> __user <span style="color:#669900">*</span>buffer<span style="color:#999999">,</span> size_t size<span style="color:#999999">,</span> loff_t <span style="color:#669900">*</span>p<span style="color:#999999">)</span><span style="color:#999999">;</span> 
</code></span></span>

参数含义:

  • filp:待操作的设备文件file结构体指针;
  • buffer:为对应放置所读数据的缓冲区指针(即用户空间内存地址);
  • size:为要读取的数据长度;
  • p:为读的位置相对于文件开头的偏移,在读取信息后,这个指针一般都会移动,移动的值为要读取信息的长度值;
  • __user:是一个空的宏,主要用来显示的告诉程序员它修饰的指针变量存放的是用户空间的地址。

返回值:
成功实际读取的字节数,失败返回负值。
如果该操作为空,将使得read系统调用返回负EINVAL失败,正常返回实际读取的字节数。

 两个函数的作用分别是 从设备中获取数据发送数据给设备,应用程序中与之对应的也有 write() 函数及 read() 函数:

<span style="color:#000000"><span style="background-color:#282c34"><code class="language-c">len <span style="color:#669900">=</span> <span style="color:#61aeee">read</span><span style="color:#999999">(</span>fd<span style="color:#999999">,</span>buf<span style="color:#999999">,</span>len <span style="color:#999999">)</span>
<span style="color:#c678dd">static</span> ssize_t <span style="color:#61aeee">hello_read</span><span style="color:#999999">(</span><span style="color:#c678dd">struct</span> file <span style="color:#669900">*</span>filep<span style="color:#999999">,</span> <span style="color:#c678dd">char</span> __user <span style="color:#669900">*</span>buf<span style="color:#999999">,</span> size_t len<span style="color:#999999">,</span> loff_t <span style="color:#669900">*</span>pos<span style="color:#999999">)</span>
</code></span></span>
<span style="color:#000000"><span style="background-color:#282c34"><code class="language-c">len <span style="color:#669900">=</span> <span style="color:#61aeee">write</span><span style="color:#999999">(</span>fd<span style="color:#999999">,</span>buf<span style="color:#999999">,</span>size<span style="color:#999999">)</span>
<span style="color:#c678dd">static</span> ssize_t <span style="color:#61aeee">hello_write</span><span style="color:#999999">(</span><span style="color:#c678dd">struct</span> file <span style="color:#669900">*</span>filep<span style="color:#999999">,</span> <span style="color:#c678dd">const</span> <span style="color:#c678dd">char</span> __user <span style="color:#669900">*</span>buf<span style="color:#999999">,</span> size_t len<span style="color:#999999">,</span> loff_t <span style="color:#669900">*</span>pos<span style="color:#999999">)</span>
</code></span></span>

我们知道,应用程序工作在用户空间,而驱动工作在内核空间,二者不能直接通信的,那我们用何种方法进行通信呢?下面介绍一下内核中的 memcpy—copy_from_usercopy_to_user,虽然说内核中不能使用C库提供的函数,但是内核也有一个memcpy函数,用法跟C库中的一样。

2.3 copy_from_user函数与copy_to_user函数

从字面意义上理解:user是指用户,即用户空间。

file_operations结构体中实现的write函数,即2.2中的write() 函数中,用户空间向内核空间拷贝(写)数据需要使用copy_from_user函数。而用户空间从内核空间读取数据需要使用copy_to_user函数。两个函数定义在arch/arm/include/asm/uaccess.h中。

两个函数定义:

<span style="color:#000000"><span style="background-color:#282c34"><code class="language-c"><span style="color:#c678dd">static</span> <span style="color:#c678dd">inline</span> <span style="color:#c678dd">int</span> <span style="color:#61aeee">copy_from_user</span><span style="color:#999999">(</span><span style="color:#c678dd">void</span> <span style="color:#669900">*</span>to<span style="color:#999999">,</span> <span style="color:#c678dd">const</span> <span style="color:#c678dd">void</span> __user <span style="color:#c678dd">volatile</span> <span style="color:#669900">*</span>from<span style="color:#999999">,</span> <span style="color:#c678dd">unsigned</span> <span style="color:#c678dd">long</span> n<span style="color:#999999">)</span><span style="color:#999999">{</span><span style="color:#61aeee">__chk_user_ptr</span><span style="color:#999999">(</span>from<span style="color:#999999">,</span> n<span style="color:#999999">)</span><span style="color:#999999">;</span><span style="color:#61aeee">volatile_memcpy</span><span style="color:#999999">(</span>to<span style="color:#999999">,</span> from<span style="color:#999999">,</span> n<span style="color:#999999">)</span><span style="color:#999999">;</span><span style="color:#c678dd">return</span> <span style="color:#98c379">0</span><span style="color:#999999">;</span>
<span style="color:#999999">}</span><span style="color:#c678dd">static</span> <span style="color:#c678dd">inline</span> <span style="color:#c678dd">int</span> <span style="color:#61aeee">copy_to_user</span><span style="color:#999999">(</span><span style="color:#c678dd">void</span> __user <span style="color:#c678dd">volatile</span> <span style="color:#669900">*</span>to<span style="color:#999999">,</span> <span style="color:#c678dd">const</span> <span style="color:#c678dd">void</span> <span style="color:#669900">*</span>from<span style="color:#999999">,</span> <span style="color:#c678dd">unsigned</span> <span style="color:#c678dd">long</span> n<span style="color:#999999">)</span><span style="color:#999999">{</span><span style="color:#61aeee">__chk_user_ptr</span><span style="color:#999999">(</span>to<span style="color:#999999">,</span> n<span style="color:#999999">)</span><span style="color:#999999">;</span><span style="color:#61aeee">volatile_memcpy</span><span style="color:#999999">(</span>to<span style="color:#999999">,</span> from<span style="color:#999999">,</span> n<span style="color:#999999">)</span><span style="color:#999999">;</span><span style="color:#c678dd">return</span> <span style="color:#98c379">0</span><span style="color:#999999">;</span>
<span style="color:#999999">}</span>
</code></span></span>

可以看到两个函数均是调用了 _memcpy() 函数:

static void volatile_memcpy(volatile char *to, const volatile char *from, unsigned long n){ while (n--) *(to++) = *(from++); }

其实在这里,我们可以思考,既然拷贝的功能上面的_memcpy() 函数就可以实现,为什么还要封装成 copy_to_user()copy_from_user()呢?

答案是_memcpy() 函数是有缺陷的,譬如我们在用户层调用函数时传入的不是字符串,而是一个不能访问或修改的地址,那样就会造成系统崩溃。

出于上面的原因,内核和用户态之间交互的数据时必须要先对数据进行检测,如果数据是安全的,才可以进行数据交互。上面的函数就是memcpy的改进版,在memcpy功能的基础上加上的检查传入参数的功能,防止有些人有意或者无意的传入无效的参数。

static inline unsigned long __must_check copy_from_user(void *to, const void __user *from, unsigned long n)
 

参数:

  • to:目标地址(内核空间)
  • from:源地址(用户空间)
  • n:将要拷贝数据的字节数

返回值:
成功返回0,失败返回没有拷贝成功的数据字节数

static inline unsigned long __must_check copy_to_user(void __user *to, const void *from, unsigned long n)

参数:

  • to:目标地址(用户空间)
  • from:源地址(内核空间)
  • n:将要拷贝数据的字节数

返回值:

成功返回0,失败返回没有拷贝成功的数据字节数

 Linux中将设备分为三大类:字符设备(I2C、USB、SPI等)、块设备(存储器相关的设备如EMMC、SD卡、U盘等)和网络设备(网络相关的设备WIFI等)。

杂项设备归属于字符设备,每个设备节点都有主设备号和次设备号 ,设备号是识别设备的一种方式,Linux系统中有很多杂项设备,而杂项设备的主设备号固定为10。                                   使用命令<cat /proc/misc>可以查看各杂项设备。

这篇关于ARM 驱动 1.22的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/635218

相关文章

Linux_kernel驱动开发11

一、改回nfs方式挂载根文件系统         在产品将要上线之前,需要制作不同类型格式的根文件系统         在产品研发阶段,我们还是需要使用nfs的方式挂载根文件系统         优点:可以直接在上位机中修改文件系统内容,延长EMMC的寿命         【1】重启上位机nfs服务         sudo service nfs-kernel-server resta

驱动(RK3588S)第七课时:单节点设备树

目录 需求一、设备树的概念1、设备树的后缀名:2、设备树的语法格式3、设备树的属性(重要)4、设备树格式举例 二、设备树所用函数1、如何在内核层种获取设备树节点:2、从设备树上获取 gpio 口的属性3、获取节点上的属性只针对于字符串属性的4、函数读取 np 结点中的 propname 属性的值,并将读取到的 u32 类型的值保存在 out_value 指向的内存中,函数的返回值表示读取到的

bash: arm-linux-gcc: No such file or directory

ubuntu出故障重装了系统,一直用着的gcc使用不了,提示bash: arm-linux-gcc: No such file or directorywhich找到的命令所在的目录 在google上翻了一阵发现此类问题的帖子不多,后来在Freescale的的LTIB环境配置文档中发现有这么一段:     # Packages required for 64-bit Ubuntu

编译linux内核出现 arm-eabi-gcc: error: : No such file or directory

external/e2fsprogs/lib/ext2fs/tdb.c:673:29: warning: comparison between : In function 'max2165_set_params': -。。。。。。。。。。。。。。。。。。 。。。。。。。。。。。。。 。。。。。。。。 host asm: libdvm <= dalvik/vm/mterp/out/Inte

驱动安装注册表指令

HKCR: HKEY_CLASSES_ROOT HKCU: HKEY_CURRENT_USER HKLM: HKEY_LOCAL_MACHINE HKU: HEKY_USER HER: 相对根键

UMDF驱动安装

VS2013 + WDF8.1,UMDF驱动选择User Mode Driver,不要选User Mode Driver 2.0,否则Win7安装有问题,如图 另外,在驱动安装时不要忘记WUDFUpdate_<主版本号><次版本号>.dll文件,具体文件名在INF中查找。此文件可在WDF的安装目录中找到。注意:在WDF的安装目录中会有3个WUDFUpdate_xxx.dll文件,x86,x6

Cortex-A7:ARM官方推荐的嵌套中断实现机制

0 参考资料 ARM Cortex-A(armV7)编程手册V4.0.pdf ARM体系结构与编程第2版 1 前言 Cortex-M系列内核MCU中断硬件原生支持嵌套中断,开发者不需要为了实现嵌套中断而进行额外的工作。但在Cortex-A7中,硬件原生是不支持嵌套中断的,这从Cortex-A7中断向量表中仅为外部中断设置了一个中断向量可以看出。本文介绍ARM官方推荐使用的嵌套中断实现机

ARM 虚拟化介绍

0.目录 文章目录 0.目录1.概述 1.1 Before you begin 2.虚拟化介绍 2.1 虚拟化为什么重要2.2 hypervisors的两种类型2.3 全虚拟化和半虚拟化2.4 虚拟机和虚拟CPUs 3.AArch64中的虚拟化4.stage 2 转换 4.1 什么是stage 2 转换4.2 VMIDs4.3 VMID vs ASID4.4 属性整合和覆盖4.5模拟

电脑驱动分类

电脑驱动程序(驱动程序)是操作系统与硬件设备之间的桥梁,用于使操作系统能够识别并与硬件设备进行通信。以下是常见的驱动分类: 1. 设备驱动程序 显示驱动程序:控制显卡和显示器的显示功能,负责图形渲染和屏幕显示。 示例:NVIDIA、AMD 显示驱动程序。打印机驱动程序:允许操作系统与打印机通信,控制打印任务。 示例:HP、Canon 打印机驱动程序。声卡驱动程序:管理音频输入和输出,与声卡硬件

麒麟系统安装GPU驱动

1.nvidia 1.1显卡驱动 本机显卡型号:nvidia rtx 3090 1.1.1下载驱动 打开 https://www.nvidia.cn/geforce/drivers/ 也可以直接使用下面这个地址下载 https://www.nvidia.com/download/driverResults.aspx/205464/en-us/ 1.1.3安装驱动 右击,