团灭 LeetCode 股票买卖问题

2024-01-21 23:52

本文主要是介绍团灭 LeetCode 股票买卖问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这几道题目是有共性的,我们只需要抽出来力扣第 188 题「188. 买卖股票的最佳时机 IV - 力扣(LeetCode)」进行研究,因为这道题是最泛化的形式,其他的问题都是这个形式的简化,看下题目:

在这里插入图片描述
第一题是只进行一次交易,相当于 k = 1;第二题是不限交易次数,相当于 k = +infinity(正无穷);第三题是只进行 2 次交易,相当于 k = 2;剩下两道也是不限次数,但是加了交易「冷冻期」和「手续费」的额外条件,其实就是第二题的变种,都很容易处理。

下面言归正传,开始解题。

穷举框架

首先,还是一样的思路:如何穷举?

动态规划算法本质上就是穷举「状态」,然后在「选择」中选择最优解。

那么对于这道题,我们具体到每一天,看看总共有几种可能的「状态」,再找出每个「状态」对应的「选择」。我们要穷举所有「状态」,穷举的目的是根据对应的「选择」更新状态。听起来抽象,你只要记住「状态」和「选择」两个词就行,下面实操一下就很容易明白了。

for 状态1 in 状态1的所有取值:for 状态2 in 状态2的所有取值:for ...dp[状态1][状态2][...] = 择优(选择1,选择2...)

比如说这个问题,每天都有三种「选择」:买入、卖出、无操作,我们用 buy, sell, rest 表示这三种选择。

但问题是,并不是每天都可以任意选择这三种选择的,因为 sell 必须在 buy 之后,buy 必须在 sell 之后。那么 rest 操作还应该分两种状态,一种是 buy 之后的 rest(持有了股票),一种是 sell 之后的 rest(没有持有股票)。而且别忘了,我们还有交易次数 k 的限制,就是说你 buy 还只能在 k > 0 的前提下操作。

注:

注意我在本文会频繁使用「交易」这个词,我们把一次买入和一次卖出定义为一次「交易」

这个问题的「状态」有三个,第一个是天数,第二个是允许交易的最大次数,第三个是当前的持有状态(即之前说的 rest 的状态,我们不妨用 1 表示持有,0 表示没有持有)。然后我们用一个三维数组就可以装下这几种状态的全部组合:

dp[i][k][0 or 1]
0 <= i <= n - 1, 1 <= k <= K
n 为天数,大 K 为交易数的上限,0 和 1 代表是否持有股票。
此问题共 n × K × 2 种状态,全部穷举就能搞定。for 0 <= i < n:for 1 <= k <= K:for s in {0, 1}:dp[i][k][s] = max(buy, sell, rest)

而且我们可以用自然语言描述出每一个状态的含义,比如说 dp[3][2][1] 的含义就是:今天是第三天,我现在手上持有着股票,至今最多进行 2 次交易。再比如 dp[2][3][0] 的含义:今天是第二天,我现在手上没有持有股票,至今最多进行 3 次交易。很容易理解,对吧?

我们想求的最终答案是 dp[n - 1][K][0],即最后一天,最多允许 K 次交易,最多获得多少利润。

你可能问为什么不是 dp[n - 1][K][1]?因为 dp[n - 1][K][1] 代表到最后一天手上还持有股票,dp[n - 1][K][0] 表示最后一天手上的股票已经卖出去了,很显然后者得到的利润一定大于前者。

记住如何解释「状态」,一旦你觉得哪里不好理解,把它翻译成自然语言就容易理解了。

状态转移框架

现在,我们完成了「状态」的穷举,我们开始思考每种「状态」有哪些「选择」,应该如何更新「状态」。

只看「持有状态」,可以画个状态转移图:

在这里插入图片描述
通过这个图可以很清楚地看到,每种状态(0 和 1)是如何转移而来的。根据这个图,我们来写一下状态转移方程:

dp[i][k][0] = max(dp[i-1][k][0], dp[i-1][k][1] + prices[i])max( 今天选择 rest,        今天选择 sell       )

解释:今天我没有持有股票,有两种可能,我从这两种可能中求最大利润:

1、我昨天就没有持有,且截至昨天最大交易次数限制为 k;然后我今天选择 rest,所以我今天还是没有持有,最大交易次数限制依然为 k

2、我昨天持有股票,且截至昨天最大交易次数限制为 k;但是今天我 sell 了,所以我今天没有持有股票了,最大交易次数限制依然为 k

dp[i][k][1] = max(dp[i-1][k][1], dp[i-1][k-1][0] - prices[i])max( 今天选择 rest,         今天选择 buy         )

解释:今天我持有着股票,最大交易次数限制为 k,那么对于昨天来说,有两种可能,我从这两种可能中求最大利润:

1、我昨天就持有着股票,且截至昨天最大交易次数限制为 k;然后今天选择 rest,所以我今天还持有着股票,最大交易次数限制依然为 k

2、我昨天本没有持有,且截至昨天最大交易次数限制为 k - 1;但今天我选择 buy,所以今天我就持有股票了,最大交易次数限制为 k

这里着重提醒一下,时刻牢记「状态」的定义,状态 k 的定义并不是「已进行的交易次数」,而是「最大交易次数的上限限制」。如果确定今天进行一次交易,且要保证截至今天最大交易次数上限为 k,那么昨天的最大交易次数上限必须是 k - 1。举个具体的例子,比方说要求你的银行卡里今天至少有 100 块钱,且你确定你今天可以赚 10 块钱,那么你就要保证昨天的银行卡要至少剩下 90 块钱。

这个解释应该很清楚了,如果 buy,就要从利润中减去 prices[i],如果 sell,就要给利润增加 prices[i]。今天的最大利润就是这两种可能选择中较大的那个。

注意 k 的限制,在选择 buy 的时候相当于开启了一次交易,那么对于昨天来说,交易次数的上限 k 应该减小 1。

现在,我们已经完成了动态规划中最困难的一步:状态转移方程。如果之前的内容你都可以理解,那么你已经可以秒杀所有问题了,只要套这个框架就行了。不过还差最后一点点,就是定义 base case,即最简单的情况。

dp[-1][...][0] = 0
解释:因为 i 是从 0 开始的,所以 i = -1 意味着还没有开始,这时候的利润当然是 0。dp[-1][...][1] = -infinity
解释:还没开始的时候,是不可能持有股票的。
因为我们的算法要求一个最大值,所以初始值设为一个最小值,方便取最大值。dp[...][0][0] = 0
解释:因为 k 是从 1 开始的,所以 k = 0 意味着根本不允许交易,这时候利润当然是 0。dp[...][0][1] = -infinity
解释:不允许交易的情况下,是不可能持有股票的。
因为我们的算法要求一个最大值,所以初始值设为一个最小值,方便取最大值。

把上面的状态转移方程总结一下:

base case:
dp[-1][...][0] = dp[...][0][0] = 0
dp[-1][...][1] = dp[...][0][1] = -infinity状态转移方程:
dp[i][k][0] = max(dp[i-1][k][0], dp[i-1][k][1] + prices[i])
dp[i][k][1] = max(dp[i-1][k][1], dp[i-1][k-1][0] - prices[i])

秒杀题目

121. 买卖股票的最佳时机

第一题,先说力扣第 121 题「121. 买卖股票的最佳时机 - 力扣(LeetCode)」,相当于 k = 1 的情况

在这里插入图片描述
直接套状态转移方程,根据 base case,可以做一些化简:

dp[i][1][0] = max(dp[i-1][1][0], dp[i-1][1][1] + prices[i])
dp[i][1][1] = max(dp[i-1][1][1], dp[i-1][0][0] - prices[i]) = max(dp[i-1][1][1], -prices[i])
解释:k = 0 的 base case,所以 dp[i-1][0][0] = 0。现在发现 k 都是 1,不会改变,即 k 对状态转移已经没有影响了。
可以进行进一步化简去掉所有 k:
dp[i][0] = max(dp[i-1][0], dp[i-1][1] + prices[i])
dp[i][1] = max(dp[i-1][1], -prices[i])
int n = prices.length;
int[][] dp = new int[n][2];
for (int i = 0; i < n; i++) {dp[i][0] = Math.max(dp[i-1][0], dp[i-1][1] + prices[i]);dp[i][1] = Math.max(dp[i-1][1], -prices[i]);
}
return dp[n - 1][0];

显然 i = 0i - 1 是不合法的索引,这是因为我们没有对 i 的 base case 进行处理,可以这样给一个特化处理:

if (i - 1 == -1) {dp[i][0] = 0;// 根据状态转移方程可得://   dp[i][0] // = max(dp[-1][0], dp[-1][1] + prices[i])// = max(0, -infinity + prices[i]) = 0dp[i][1] = -prices[i];// 根据状态转移方程可得://   dp[i][1] // = max(dp[-1][1], dp[-1][0] - prices[i])// = max(-infinity, 0 - prices[i]) // = -prices[i]continue;
}

第一题就解决了,但是这样处理 base case 很麻烦,而且注意一下状态转移方程,新状态只和相邻的一个状态有关,不需要用整个 dp 数组,只需要一个变量储存相邻的那个状态就足够了,这样可以把空间复杂度降到 O(1):

// 原始版本
int maxProfit_k_1(int[] prices) {int n = prices.length;int[][] dp = new int[n][2];for (int i = 0; i < n; i++) {if (i - 1 == -1) {// base casedp[i][0] = 0;dp[i][1] = -prices[i];continue;}dp[i][0] = Math.max(dp[i-1][0], dp[i-1][1] + prices[i]);dp[i][1] = Math.max(dp[i-1][1], -prices[i]);}return dp[n - 1][0];
}// 空间复杂度优化版本
int maxProfit_k_1(int[] prices) {int n = prices.length;// base case: dp[-1][0] = 0, dp[-1][1] = -infinityint dp_i_0 = 0, dp_i_1 = Integer.MIN_VALUE;for (int i = 0; i < n; i++) {// dp[i][0] = max(dp[i-1][0], dp[i-1][1] + prices[i])dp_i_0 = Math.max(dp_i_0, dp_i_1 + prices[i]);// dp[i][1] = max(dp[i-1][1], -prices[i])dp_i_1 = Math.max(dp_i_1, -prices[i]);}return dp_i_0;
}

122. 买卖股票的最佳时机 II

第二题,看一下力扣第 122 题「122. 买卖股票的最佳时机 II - 力扣(LeetCode)」,也就是 k 为正无穷的情况

在这里插入图片描述
题目还专门强调可以在同一天出售,但我觉得这个条件纯属多余,如果当天买当天卖,那利润当然就是 0,这不是和没有进行交易是一样的吗?这道题的特点在于没有给出交易总数 k 的限制,也就相当于 k 为正无穷。

如果 k 为正无穷,那么就可以认为 kk - 1 是一样的。可以这样改写框架:

dp[i][k][0] = max(dp[i-1][k][0], dp[i-1][k][1] + prices[i])
dp[i][k][1] = max(dp[i-1][k][1], dp[i-1][k-1][0] - prices[i])= max(dp[i-1][k][1], dp[i-1][k][0] - prices[i])我们发现数组中的 k 已经不会改变了,也就是说不需要记录 k 这个状态了:
dp[i][0] = max(dp[i-1][0], dp[i-1][1] + prices[i])
dp[i][1] = max(dp[i-1][1], dp[i-1][0] - prices[i])
// 原始版本
int maxProfit_k_inf(int[] prices) {int n = prices.length;int[][] dp = new int[n][2];for (int i = 0; i < n; i++) {if (i - 1 == -1) {// base casedp[i][0] = 0;dp[i][1] = -prices[i];continue;}dp[i][0] = Math.max(dp[i-1][0], dp[i-1][1] + prices[i]);dp[i][1] = Math.max(dp[i-1][1], dp[i-1][0] - prices[i]);}return dp[n - 1][0];
}// 空间复杂度优化版本
int maxProfit_k_inf(int[] prices) {int n = prices.length;int dp_i_0 = 0, dp_i_1 = Integer.MIN_VALUE;for (int i = 0; i < n; i++) {int temp = dp_i_0;dp_i_0 = Math.max(dp_i_0, dp_i_1 + prices[i]);dp_i_1 = Math.max(dp_i_1, temp - prices[i]);}return dp_i_0;
}

123. 买卖股票的最佳时机 III

第三题,看力扣第 123 题「123. 买卖股票的最佳时机 III - 力扣(LeetCode)」,也就是 k = 2 的情况
在这里插入图片描述
k = 2 和前面题目的情况稍微不同,因为上面的情况都和 k 的关系不太大:要么 k 是正无穷,状态转移和 k 没关系了;要么 k = 1,跟 k = 0 这个 base case 挨得近,最后也没有存在感。

这道题 k = 2 和后面要讲的 k 是任意正整数的情况中,对 k 的处理就凸显出来了,我们直接写代码,边写边分析原因。

原始的状态转移方程,没有可化简的地方
dp[i][k][0] = max(dp[i-1][k][0], dp[i-1][k][1] + prices[i])
dp[i][k][1] = max(dp[i-1][k][1], dp[i-1][k-1][0] - prices[i])

按照之前的代码,我们可能想当然这样写代码(错误的):

int k = 2;
int[][][] dp = new int[n][k + 1][2];
for (int i = 0; i < n; i++) {if (i - 1 == -1) {// 处理 base casedp[i][k][0] = 0;dp[i][k][1] = -prices[i];continue;}dp[i][k][0] = Math.max(dp[i-1][k][0], dp[i-1][k][1] + prices[i]);dp[i][k][1] = Math.max(dp[i-1][k][1], dp[i-1][k-1][0] - prices[i]);
}
return dp[n - 1][k][0];

为什么错误?我这不是照着状态转移方程写的吗?

还记得前面总结的「穷举框架」吗?就是说我们必须穷举所有状态。其实我们之前的解法,都在穷举所有状态,只是之前的题目中 k 都被化简掉了。

比如说第一题,k = 1 时的代码框架:

int n = prices.length;
int[][] dp = new int[n][2];
for (int i = 0; i < n; i++) {dp[i][0] = Math.max(dp[i-1][0], dp[i-1][1] + prices[i]);dp[i][1] = Math.max(dp[i-1][1], -prices[i]);
}
return dp[n - 1][0];

但当 k = 2 时,由于没有消掉 k 的影响,所以必须要对 k 进行穷举:

// 原始版本
int maxProfit_k_2(int[] prices) {int max_k = 2, n = prices.length;int[][][] dp = new int[n][max_k + 1][2];for (int i = 0; i < n; i++) {for (int k = max_k; k >= 1; k--) {if (i - 1 == -1) {// 处理 base casedp[i][k][0] = 0;dp[i][k][1] = -prices[i];continue;}dp[i][k][0] = Math.max(dp[i-1][k][0], dp[i-1][k][1] + prices[i]);dp[i][k][1] = Math.max(dp[i-1][k][1], dp[i-1][k-1][0] - prices[i]);}}// 穷举了 n × max_k × 2 个状态,正确。return dp[n - 1][max_k][0];
}

这里肯定会有读者疑惑,k 的 base case 是 0,按理说应该从 k = 1, k++ 这样穷举状态 k 才对?而且如果你真的这样从小到大遍历 k,提交发现也是可以的

为什么我从大到小遍历 k 也可以正确提交呢?因为你注意看,dp[i][k][..] 不会依赖 dp[i][k - 1][..],而是依赖 dp[i - 1][k - 1][..],而 dp[i - 1][..][..],都是已经计算出来的,所以不管你是 k = max_k, k--,还是 k = 1, k++,都是可以得出正确答案的。

那为什么我使用 k = max_k, k-- 的方式呢?因为这样符合语义:

你买股票,初始的「状态」是什么?应该是从第 0 天开始,而且还没有进行过买卖,所以最大交易次数限制 k 应该是 max_k;而随着「状态」的推移,你会进行交易,那么交易次数上限 k 应该不断减少,这样一想,k = max_k, k-- 的方式是比较合乎实际场景的。

当然,这里 k 取值范围比较小,所以也可以不用 for 循环,直接把 k = 1 和 2 的情况全部列举出来也可以:

// 状态转移方程:
// dp[i][2][0] = max(dp[i-1][2][0], dp[i-1][2][1] + prices[i])
// dp[i][2][1] = max(dp[i-1][2][1], dp[i-1][1][0] - prices[i])
// dp[i][1][0] = max(dp[i-1][1][0], dp[i-1][1][1] + prices[i])
// dp[i][1][1] = max(dp[i-1][1][1], -prices[i])// 空间复杂度优化版本
int maxProfit_k_2(int[] prices) {// base caseint dp_i10 = 0, dp_i11 = Integer.MIN_VALUE;int dp_i20 = 0, dp_i21 = Integer.MIN_VALUE;for (int price : prices) {dp_i20 = Math.max(dp_i20, dp_i21 + price);dp_i21 = Math.max(dp_i21, dp_i10 - price);dp_i10 = Math.max(dp_i10, dp_i11 + price);dp_i11 = Math.max(dp_i11, -price);}return dp_i20;
}

这篇关于团灭 LeetCode 股票买卖问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/631226

相关文章

哈希leetcode-1

目录 1前言 2.例题  2.1两数之和 2.2判断是否互为字符重排 2.3存在重复元素1 2.4存在重复元素2 2.5字母异位词分组 1前言 哈希表主要是适合于快速查找某个元素(O(1)) 当我们要频繁的查找某个元素,第一哈希表O(1),第二,二分O(log n) 一般可以分为语言自带的容器哈希和用数组模拟的简易哈希。 最简单的比如数组模拟字符存储,只要开26个c

好题——hdu2522(小数问题:求1/n的第一个循环节)

好喜欢这题,第一次做小数问题,一开始真心没思路,然后参考了网上的一些资料。 知识点***********************************无限不循环小数即无理数,不能写作两整数之比*****************************(一开始没想到,小学没学好) 此题1/n肯定是一个有限循环小数,了解这些后就能做此题了。 按照除法的机制,用一个函数表示出来就可以了,代码如下

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

购买磨轮平衡机时应该注意什么问题和技巧

在购买磨轮平衡机时,您应该注意以下几个关键点: 平衡精度 平衡精度是衡量平衡机性能的核心指标,直接影响到不平衡量的检测与校准的准确性,从而决定磨轮的振动和噪声水平。高精度的平衡机能显著减少振动和噪声,提高磨削加工的精度。 转速范围 宽广的转速范围意味着平衡机能够处理更多种类的磨轮,适应不同的工作条件和规格要求。 振动监测能力 振动监测能力是评估平衡机性能的重要因素。通过传感器实时监

缓存雪崩问题

缓存雪崩是缓存中大量key失效后当高并发到来时导致大量请求到数据库,瞬间耗尽数据库资源,导致数据库无法使用。 解决方案: 1、使用锁进行控制 2、对同一类型信息的key设置不同的过期时间 3、缓存预热 1. 什么是缓存雪崩 缓存雪崩是指在短时间内,大量缓存数据同时失效,导致所有请求直接涌向数据库,瞬间增加数据库的负载压力,可能导致数据库性能下降甚至崩溃。这种情况往往发生在缓存中大量 k

6.1.数据结构-c/c++堆详解下篇(堆排序,TopK问题)

上篇:6.1.数据结构-c/c++模拟实现堆上篇(向下,上调整算法,建堆,增删数据)-CSDN博客 本章重点 1.使用堆来完成堆排序 2.使用堆解决TopK问题 目录 一.堆排序 1.1 思路 1.2 代码 1.3 简单测试 二.TopK问题 2.1 思路(求最小): 2.2 C语言代码(手写堆) 2.3 C++代码(使用优先级队列 priority_queue)

leetcode-24Swap Nodes in Pairs

带头结点。 /*** Definition for singly-linked list.* public class ListNode {* int val;* ListNode next;* ListNode(int x) { val = x; }* }*/public class Solution {public ListNode swapPairs(L

leetcode-23Merge k Sorted Lists

带头结点。 /*** Definition for singly-linked list.* public class ListNode {* int val;* ListNode next;* ListNode(int x) { val = x; }* }*/public class Solution {public ListNode mergeKLists

【VUE】跨域问题的概念,以及解决方法。

目录 1.跨域概念 2.解决方法 2.1 配置网络请求代理 2.2 使用@CrossOrigin 注解 2.3 通过配置文件实现跨域 2.4 添加 CorsWebFilter 来解决跨域问题 1.跨域概念 跨域问题是由于浏览器实施了同源策略,该策略要求请求的域名、协议和端口必须与提供资源的服务相同。如果不相同,则需要服务器显式地允许这种跨域请求。一般在springbo

题目1254:N皇后问题

题目1254:N皇后问题 时间限制:1 秒 内存限制:128 兆 特殊判题:否 题目描述: N皇后问题,即在N*N的方格棋盘内放置了N个皇后,使得它们不相互攻击(即任意2个皇后不允许处在同一排,同一列,也不允许处在同一斜线上。因为皇后可以直走,横走和斜走如下图)。 你的任务是,对于给定的N,求出有多少种合法的放置方法。输出N皇后问题所有不同的摆放情况个数。 输入