python 图片二值化,skimage库打包后出现You may load I/O plugins with the `skimage.io.use_plugin` command

本文主要是介绍python 图片二值化,skimage库打包后出现You may load I/O plugins with the `skimage.io.use_plugin` command,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

python 图片二值化,自动获threshold

因工作原因,需要处理视频,并把帧图二值化,ocr后按照一定的格式输出成一个word。
这里主要记录打包遇到的问题,其他不多说。

其中二值化参考:
https://blog.csdn.net/t8116189520/article/details/80271804
因为是批量的 threshold值不能固定,用到了skimage这个库

把上面链接里面代码的 threshold = 200 改为

threshold = filters.threshold_otsu(img_thresh)
otsu算法确定最佳分割阈值

前提交代的差不多了,代码撸好打包到exe后 发现毫无反应后 发现提示问题 You may load I/O plugins with the skimage.io.use_plugin command

经过百度查资料 找到解决方法:链接
https://stackoverflow.com/questions/34761862/pyinstaller-you-may-load-i-o-plugins-with-the-skimage-io-use-plugin/35043355
在这里插入图片描述
修改正常打包的.spec 把图中

from PyInstaller.utils.hooks import collect_data_files, collect_submodules

datas = collect_data_files(“skimage.io._plugins”)
hiddenimports = collect_submodules(‘skimage.io._plugins’)

几句添加修改进去。
然后再对 spec打包,就解决了问题。

这篇关于python 图片二值化,skimage库打包后出现You may load I/O plugins with the `skimage.io.use_plugin` command的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/630693

相关文章

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

springboot3打包成war包,用tomcat8启动

1、在pom中,将打包类型改为war <packaging>war</packaging> 2、pom中排除SpringBoot内置的Tomcat容器并添加Tomcat依赖,用于编译和测试,         *依赖时一定设置 scope 为 provided (相当于 tomcat 依赖只在本地运行和测试的时候有效,         打包的时候会排除这个依赖)<scope>provided

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

nudepy,一个有趣的 Python 库!

更多资料获取 📚 个人网站:ipengtao.com 大家好,今天为大家分享一个有趣的 Python 库 - nudepy。 Github地址:https://github.com/hhatto/nude.py 在图像处理和计算机视觉应用中,检测图像中的不适当内容(例如裸露图像)是一个重要的任务。nudepy 是一个基于 Python 的库,专门用于检测图像中的不适当内容。该

pip-tools:打造可重复、可控的 Python 开发环境,解决依赖关系,让代码更稳定

在 Python 开发中,管理依赖关系是一项繁琐且容易出错的任务。手动更新依赖版本、处理冲突、确保一致性等等,都可能让开发者感到头疼。而 pip-tools 为开发者提供了一套稳定可靠的解决方案。 什么是 pip-tools? pip-tools 是一组命令行工具,旨在简化 Python 依赖关系的管理,确保项目环境的稳定性和可重复性。它主要包含两个核心工具:pip-compile 和 pip

HTML提交表单给python

python 代码 from flask import Flask, request, render_template, redirect, url_forapp = Flask(__name__)@app.route('/')def form():# 渲染表单页面return render_template('./index.html')@app.route('/submit_form',

Android 10.0 mtk平板camera2横屏预览旋转90度横屏拍照图片旋转90度功能实现

1.前言 在10.0的系统rom定制化开发中,在进行一些平板等默认横屏的设备开发的过程中,需要在进入camera2的 时候,默认预览图像也是需要横屏显示的,在上一篇已经实现了横屏预览功能,然后发现横屏预览后,拍照保存的图片 依然是竖屏的,所以说同样需要将图片也保存为横屏图标了,所以就需要看下mtk的camera2的相关横屏保存图片功能, 如何实现实现横屏保存图片功能 如图所示: 2.mtk