SATA驱动中FIS命令处理(详细)流程附代码和协议解析

2024-01-21 15:20

本文主要是介绍SATA驱动中FIS命令处理(详细)流程附代码和协议解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

    • 一、简介
    • 二、命令处理详细流程
      • 2.1 总体过程总结
      • 2.2 内存布局
        • 2.2.1 具体内存分配规则
        • 2.2.2 具体命令填充
        • 2.2.3 命令触发流程
        • 2.2.4 其他注意事项
    • 三、其他相关链接
      • 1、SATA模块之HBA卡开发总结(一)
      • 2、SATA信息传输FIS结构总结
      • 3、PCIe物理层总结-PCIE专题知识(一)
      • 4、PCIe数据链路层图文总结-PCIe专题知识(二)
      • 5、SSD硬盘SATA接口和M.2接口区别总结

一、简介

本文主要讲述在SATA模块命令的处理、数据的传输和内存分布详细过程,同时讲述如何通过FIS用于Host和device之间信息传输。

二、命令处理详细流程

2.1 总体过程总结

1、构造FIS命令;
2、填充Command Table;
3、填充Command Header;
4、通知Host或Device处理命令;

2.2 内存布局

SATA在处理命令前构造的FIS和填充的数据都是存放在内存中,但是controller如何知道具体存放位置呢?这就要借助每个Port很重要的两个寄存器存放FIS(FB和FBS)的基地址和Command Header(CLB和CLBU)的基地址。

在这里插入图片描述
在这里插入图片描述

2.2.1 具体内存分配规则

根据AHCI SPEC和sata驱动,每个port有一段分配的内存区域(CFIS)存放FIS内容和Comand List(PRDT)相关信息。
具体偏移地址如下:
在这里插入图片描述

	if (pp->fbs_supported) {dma_sz = AHCI_PORT_PRIV_FBS_DMA_SZ;rx_fis_sz = ACARD_AHCI_RX_FIS_SZ * 16;} else {dma_sz = AHCI_PORT_PRIV_DMA_SZ;rx_fis_sz = ACARD_AHCI_RX_FIS_SZ; 		//512Byte}mem = dmam_alloc_coherent(dev, dma_sz, &mem_dma, GFP_KERNEL);if (!mem)return -ENOMEM;/** First item in chunk of DMA memory: 32-slot command table,* 32 bytes each in size*/pp->cmd_slot = mem;pp->cmd_slot_dma = mem_dma;mem += AHCI_CMD_SLOT_SZ;		//32Byte * 32 command = 1024Bytemem_dma += AHCI_CMD_SLOT_SZ;/** Second item: Received-FIS area*/pp->rx_fis = mem;pp->rx_fis_dma = mem_dma;mem += rx_fis_sz;	//512Byte 非FBS模式mem_dma += rx_fis_sz;/** Third item: data area for storing a single command* and its scatter-gather table*/pp->cmd_tbl = mem;pp->cmd_tbl_dma = mem_dma;
2.2.2 具体命令填充

1、构造FIS填充在CFIS指定的地址
在这里插入图片描述
2、PRDT中一个sgl的地址,主要是数据传输时用来存放数据地址
在这里插入图片描述

3、填充Command Header
每一个Port有32个Command Header,填充后Host或者Device根据顺序依次处理,每个Header填充了Comand Feature信息和Command Table的基地址,便于直接解析FIS和Command List。
在这里插入图片描述
在这里插入图片描述

4、整体command构造代码流程如下

0-> ahci_qc_prep1-> ata_tf_to_fis //将tf的各个值填入到cfis中对应字段1-> memcpy(cmd_tbl + AHCI_CMD_TBL_CDB, qc->cdb, qc->dev->cdb_len); //如果是scsi的命令,则拷贝cdb命令到ACMD中,即使用SATA中的ATAPI命令。1-> ahci_fill_sg //将上层的sgl中的sg一个一个填入到PRD表中1-> ahci_fill_cmd_slot //填充command header,command header的地址初始化阶段已被写到了PxCLB和PxCLBU寄存器中2-> opts = cmd_fis_len | n_elem << 16 | (qc->dev->link->pmp << 12);opts |= AHCI_CMD_WRITE; //写命令opts |= AHCI_CMD_ATAPI | AHCI_CMD_PREFETCH; //atapi命令DW0=opts2-> 清零PRDBC,该字段用于当前已经完成的读写字节数2-> 将本命令的内存的DMA地址赋值给CTBA
2.2.3 命令触发流程

驱动在分配的对应的Command Header和Command Table内存并填充了相关信息后就要通知Host或者Device处理命令,具体流程如下:
1、填充分配给Command header Base地址到PnCLB和PnCLBU寄存器中;
2、填充FIS存放的BASE地址到PnFB和PnFBS中;
3、使能PnCMD中fre位使能FIS接收;
4、置位PnCI寄存器;
5、读PnTFD寄存器bit[7:0],确定command处理结果;

	/* set FIS registers */if (hpriv->cap & HOST_CAP_64)writel((pp->cmd_slot_dma >> 16) >> 16,//将申请的cmd_slot_dma BASE地址写入到PnCLBport_mmio + PORT_LST_ADDR_HI);writel(pp->cmd_slot_dma & 0xffffffff, port_mmio + PORT_LST_ADDR);if (hpriv->cap & HOST_CAP_64)writel((pp->rx_fis_dma >> 16) >> 16,将申请的rx_fis_dma BASE地址写入到PnFBport_mmio + PORT_FIS_ADDR_HI);writel(pp->rx_fis_dma & 0xffffffff, port_mmio + PORT_FIS_ADDR);/* enable FIS reception */tmp = readl(port_mmio + PORT_CMD);tmp |= PORT_CMD_FIS_RX;writel(tmp, port_mmio + PORT_CMD);//使能FIS接收

在这里插入图片描述

	/* issue & wait */writel(1, port_mmio + PORT_CMD_ISSUE);  //通知处理command PnCIif (timeout_msec) {tmp = ata_wait_register(ap, port_mmio + PORT_CMD_ISSUE,0x1, 0x1, 1, timeout_msec);if (tmp & 0x1) {ahci_kick_engine(ap); //读取PnCMD中命令处理状态return -EBUSY;}} elsereadl(port_mmio + PORT_CMD_ISSUE);	/* flush */return 0;
2.2.4 其他注意事项

1、sata驱动中FB中填充的FIS BASEADDR(256Byte)存放FIS内容主要是PIO Setup FIS、D2H Register FIS、SDB FIS、Unknown FIS,而其他的FIS存放在Command Table中起始的位置,代码如下:
在这里插入图片描述
在这里插入图片描述

其他FIS存放起始地址:

	cmd_tbl = pp->cmd_tbl + qc->hw_tag * AHCI_CMD_TBL_SZ;//Command Table起始地址ata_tf_to_fis(&qc->tf, qc->dev->link->pmp, 1, cmd_tbl);

2、内核驱动中每个Port分配的Commad List数量有误
根据协议每个Command Table最大限制在1K对齐,硬件最大支持64K,而每个Command List为16B,则最大为64个,而内核驱动中写成168个,可能是开发人员手误多打了一个8:
在这里插入图片描述
在这里插入图片描述
相当于每个Table都额外多申请的内存:
在这里插入图片描述

具体的FIS类型参考博客链接:SATA信息传输FIS结构总结

三、其他相关链接

1、SATA模块之HBA卡开发总结(一)

2、SATA信息传输FIS结构总结

3、PCIe物理层总结-PCIE专题知识(一)

4、PCIe数据链路层图文总结-PCIe专题知识(二)

5、SSD硬盘SATA接口和M.2接口区别总结

这篇关于SATA驱动中FIS命令处理(详细)流程附代码和协议解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/629957

相关文章

网页解析 lxml 库--实战

lxml库使用流程 lxml 是 Python 的第三方解析库,完全使用 Python 语言编写,它对 XPath表达式提供了良好的支 持,因此能够了高效地解析 HTML/XML 文档。本节讲解如何通过 lxml 库解析 HTML 文档。 pip install lxml lxm| 库提供了一个 etree 模块,该模块专门用来解析 HTML/XML 文档,下面来介绍一下 lxml 库

Security OAuth2 单点登录流程

单点登录(英语:Single sign-on,缩写为 SSO),又译为单一签入,一种对于许多相互关连,但是又是各自独立的软件系统,提供访问控制的属性。当拥有这项属性时,当用户登录时,就可以获取所有系统的访问权限,不用对每个单一系统都逐一登录。这项功能通常是以轻型目录访问协议(LDAP)来实现,在服务器上会将用户信息存储到LDAP数据库中。相同的,单一注销(single sign-off)就是指

Spring Security基于数据库验证流程详解

Spring Security 校验流程图 相关解释说明(认真看哦) AbstractAuthenticationProcessingFilter 抽象类 /*** 调用 #requiresAuthentication(HttpServletRequest, HttpServletResponse) 决定是否需要进行验证操作。* 如果需要验证,则会调用 #attemptAuthentica

无人叉车3d激光slam多房间建图定位异常处理方案-墙体画线地图切分方案

墙体画线地图切分方案 针对问题:墙体两侧特征混淆误匹配,导致建图和定位偏差,表现为过门跳变、外月台走歪等 ·解决思路:预期的根治方案IGICP需要较长时间完成上线,先使用切分地图的工程化方案,即墙体两侧切分为不同地图,在某一侧只使用该侧地图进行定位 方案思路 切分原理:切分地图基于关键帧位置,而非点云。 理论基础:光照是直线的,一帧点云必定只能照射到墙的一侧,无法同时照到两侧实践考虑:关

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

活用c4d官方开发文档查询代码

当你问AI助手比如豆包,如何用python禁止掉xpresso标签时候,它会提示到 这时候要用到两个东西。https://developers.maxon.net/论坛搜索和开发文档 比如这里我就在官方找到正确的id描述 然后我就把参数标签换过来

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

30常用 Maven 命令

Maven 是一个强大的项目管理和构建工具,它广泛用于 Java 项目的依赖管理、构建流程和插件集成。Maven 的命令行工具提供了大量的命令来帮助开发人员管理项目的生命周期、依赖和插件。以下是 常用 Maven 命令的使用场景及其详细解释。 1. mvn clean 使用场景:清理项目的生成目录,通常用于删除项目中自动生成的文件(如 target/ 目录)。共性规律:清理操作

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言