全网最详细丨2024年AMC8真题及答案来了

2024-01-20 21:52

本文主要是介绍全网最详细丨2024年AMC8真题及答案来了,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

前言

真题回忆

真题解析

结尾


前言

相信大家都已经知道今年AMC8出事情了吧,但最重要的还是要从中学到新知识。

听说今年考生被提前12分钟强制交卷了,肯定因为试题泄露了。

最新回复:我们这边已经退费了

真题回忆

需要word文档的请私信 

真题解析

1. 这一道题非常简单,只需观察个位即可,个位变化如下:
    2→0→8→6→4→2       故选B

2.没有什么特别好的方法,硬算即可,记得先约分再算。

   4+2.5+0.04=6.54        故选C

 

3.这一题问的是灰色面积,利用大减小,分别求出两个灰色L形再相加。

   7×7-4×4=(7+4)(7-4)=33

   10×10-9×9=(10+9)(10-9)=19

   33+19=52             

   故选E

4.这是一道思维题。题目说Yunji把1-9加起来,但漏了一个,结果是平方数,问漏的数。

   我们可以先把1加到9的和给算出来:1+2+3+……+9=(1+9)*9÷2=45

   而题目漏了一个数,我们把这个漏完后的序列范围给找出来:

   漏9(最小):45-9=36    漏1(最大):45-1=44

   也就是说漏完后的序列范围在36~44之间。

   而36~44之间有且仅有一个平方数——36=6×6。

   所以漏的数是9,故选E。

5.暴力枚举,注意题目中的cannot。
   先看第一个答案5,5=1+4=2+3,而2×3=6,答案A正确。

   再看第二个答案6,6=1+5=2+4=3+3,并没有乘积为6的,答案B错误。

   接着看第三个答案7,7=1+6=2+5=3+4,而1×6=6,答案C正确。

   然后看第四个答案8,8=1+7=2+6=3+5=4+4,而2×6=12,答案D正确。

   最后看第五个答案9,9=1+8=2+7=3+6=4+5,而3×6=18,答案E正确。

   故选B

6.这是一道观察题目,通过观察很容易发现Q最长,S第二长,剩下的P和R需要仔细研究。

   因为圆的半周长是肯定大于自身的直径的,所以R最短,P第二短。

   注意:这道题问的是从短到长,千万不要选成C了!!!

   故选D

7.动手画一画就能得出答案:

  

  故选E

8.可以画一个二叉树,再去掉相同的。每个树枝往上代表+3,往下代表×2.

  

数一数,共6种,故选D。

9.简单通比。

   红 : 绿 : 蓝=1 : 2 : 4
   总弹珠数应该是(1+2+4)的倍数,排除ABCD。

   故选E

10.基础计算题,1980是338,每年增长1.5,问2030年。

    (2030-1980)*1.5+338≈414

    故选B

11.先求出三角形的底边长为(11-5)=6。

     根据三角形面积公式,可得出6(y-7)=24,解得y=11。

     故选D

12.解:设第一个鱼缸有x条孔雀鱼。

     x+(x+1)+(x+1+2)+(x+1+2+3)=90

                                        4x+10=90

                                              4x=80

                                                x=20

                                            x+6=26    

    故选E

13.因为兔子跳来跳去最终要回到原地,也就是说要有三个up和三个down。

     很容易想到标数法(最高三层):

     

     故选B

14.最优问题。

     最优路线为:

    

    5+2+6+5+10=28,故选A

15.思维题,先化简算式。

           8 × FLYFLY = BUGBUG

     8 × FLY × 1001 = BUG × 1001

                 8 × FLY = BUG

     要想FLY最大,且FLY和BUG个个数位不同,F最大也只能是1,L=2,Y=3。

     BUG = 123 × 8 = 984 

     123 + 984 = 1107

     故选C

16.思维题,最优问题。

     首先要知道1-81中有多少个3的倍数,每三个数中会有一个,所以共有27个。

     现在题目要求我们让尽可能少的行和列是3的倍数,那么这些数该放在哪里呢?

     情况1:

      

     共“祸害”了9个行和3个列,3+9=12。

     情况2:

     

     共“祸害”了5个行和6个列,5+6=11。

     11<12  故选D

17.分类讨论。

     题目说在3×3的格子中放一个黑一个白,每个子的攻击方式是周围一圈(类似于扫雷)。

     问有多少种摆放方法才能让两个子互不攻击。

     我们先不考虑棋子的颜色。

     情况一(两子在边上):

    

    共有四条边,所以有四种。

    情况二(两子成“日”字):

    

    一条边有两组,有四条边,2×4=8(种)

   情况三(两子对角)

    

   两条对角线,共两种。

   情况四(两子对边)

    

  两条对边,共两种。

  (4+8+2+2)×2=32(种)

  故选E

20.观察能力。

    通过观察我们可以发现以任意一个定点延出去的三个边上的三个定点都可以组成一个等边      三角形。

   而链接P点的有三条边,所以会有三个等边三角形包含P点,故选D

21.差的只数必定是(3-1)和(4-1)的公倍数,排除ACD。

     剩下两个选项,试一试即可。

     12÷(3+1)×3=9  12-9=3

     9-3+5=11  3+3-5=1

     很显然B不对,故选E

​​

22.老题目了,圆面积计算。

     (2×2-1×1)π÷0.015≈3×3÷0.015≈600

     故选B

23.老题目,穿格子问题。

     先算出长方形的长和宽:   

     长:8000-3000=5000 

     宽:5000-2000=3000

     (5000/1000+3000/1000-1)*1000=7000

    故选C

24.画图表数据。

     

     先求出两个三角形不重合时的总面积:

     8×8+12×12=208

     重叠部分面积:

     208-183=2  25=5×5

     故选B

25.压轴题,分类讨论。

     已经来了8名旅客,还有4个空位可以选,共C_{12}^{4}种。

     而满足夫妻相邻的座位分三种情况,每个加数表示每一行可以空的座位数:

     3+1+0+0

     2+2+0+0

     2+1+1+0

     第一种情况:有一行全部空出来,共有4种,剩下一个位置共有9种,4×9=36种。

     第二种情况:四行任选两行,有C_{4}^{2}种,每行有三种情况,但是一种不可以满足条件,故         有3×3-1=8种。再乘上C_{4}^{2}=48种。

     第三种情况:两个相邻位置有8种,剩下两个1有3×3×3种方法,共216种。

     (36+48+216)÷495=300÷495=60÷99=20÷33

     故选C

结尾

还是开头那句话,大家应该都已经知道今年AMC8出了点事情,但最重要的是从中学到了新知识。

最后认识一下吧,我是爱编程的小芒果,专注于高质量的博文,我们下期再见!

这篇关于全网最详细丨2024年AMC8真题及答案来了的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/627466

相关文章

最新版IDEA配置 Tomcat的详细过程

《最新版IDEA配置Tomcat的详细过程》本文介绍如何在IDEA中配置Tomcat服务器,并创建Web项目,首先检查Tomcat是否安装完成,然后在IDEA中创建Web项目并添加Web结构,接着,... 目录配置tomcat第一步,先给项目添加Web结构查看端口号配置tomcat    先检查自己的to

使用Nginx来共享文件的详细教程

《使用Nginx来共享文件的详细教程》有时我们想共享电脑上的某些文件,一个比较方便的做法是,开一个HTTP服务,指向文件所在的目录,这次我们用nginx来实现这个需求,本文将通过代码示例一步步教你使用... 在本教程中,我们将向您展示如何使用开源 Web 服务器 Nginx 设置文件共享服务器步骤 0 —

SpringBoot集成SOL链的详细过程

《SpringBoot集成SOL链的详细过程》Solanaj是一个用于与Solana区块链交互的Java库,它为Java开发者提供了一套功能丰富的API,使得在Java环境中可以轻松构建与Solana... 目录一、什么是solanaj?二、Pom依赖三、主要类3.1 RpcClient3.2 Public

手把手教你idea中创建一个javaweb(webapp)项目详细图文教程

《手把手教你idea中创建一个javaweb(webapp)项目详细图文教程》:本文主要介绍如何使用IntelliJIDEA创建一个Maven项目,并配置Tomcat服务器进行运行,过程包括创建... 1.启动idea2.创建项目模板点击项目-新建项目-选择maven,显示如下页面输入项目名称,选择

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt

在 VSCode 中配置 C++ 开发环境的详细教程

《在VSCode中配置C++开发环境的详细教程》本文详细介绍了如何在VisualStudioCode(VSCode)中配置C++开发环境,包括安装必要的工具、配置编译器、设置调试环境等步骤,通... 目录如何在 VSCode 中配置 C++ 开发环境:详细教程1. 什么是 VSCode?2. 安装 VSCo

Spring Boot 中整合 MyBatis-Plus详细步骤(最新推荐)

《SpringBoot中整合MyBatis-Plus详细步骤(最新推荐)》本文详细介绍了如何在SpringBoot项目中整合MyBatis-Plus,包括整合步骤、基本CRUD操作、分页查询、批... 目录一、整合步骤1. 创建 Spring Boot 项目2. 配置项目依赖3. 配置数据源4. 创建实体类

python与QT联合的详细步骤记录

《python与QT联合的详细步骤记录》:本文主要介绍python与QT联合的详细步骤,文章还展示了如何在Python中调用QT的.ui文件来实现GUI界面,并介绍了多窗口的应用,文中通过代码介绍... 目录一、文章简介二、安装pyqt5三、GUI页面设计四、python的使用python文件创建pytho

SpringBoot整合InfluxDB的详细过程

《SpringBoot整合InfluxDB的详细过程》InfluxDB是一个开源的时间序列数据库,由Go语言编写,适用于存储和查询按时间顺序产生的数据,它具有高效的数据存储和查询机制,支持高并发写入和... 目录一、简单介绍InfluxDB是什么?1、主要特点2、应用场景二、使用步骤1、集成原生的Influ

SpringBoot实现websocket服务端及客户端的详细过程

《SpringBoot实现websocket服务端及客户端的详细过程》文章介绍了WebSocket通信过程、服务端和客户端的实现,以及可能遇到的问题及解决方案,感兴趣的朋友一起看看吧... 目录一、WebSocket通信过程二、服务端实现1.pom文件添加依赖2.启用Springboot对WebSocket