Docker技术原理之Linux Cgroups(资源限制)

2024-01-20 18:32

本文主要是介绍Docker技术原理之Linux Cgroups(资源限制),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

0.前言

首先要知道一个运行的容器,其实就是一个受到隔离和资源限制的Linux进程——对,它就是一个进程。前面我们讨论了Docker容器实现隔离用到的技术Linux namespace,本篇我们来讨论容器实现资源限制的技术 Linux CGroups。

1.关于Linux CGroups

Linux Cgroups的全称是Linux Control Groups。它最主要的作用,就是限制一个进程组能够使用的资源上限,包括CPU、内存、磁盘、网络带宽等等。此外,还能够对进程进行优先级设置,以及将进程挂起和恢复等操作。

在Linux中,Cgroups给用户暴露出来的操作接口是文件系统,即它以文件和目录的方式组织在操作系统的/sys/fs/cgroup路径下。在我的centos服务器下,用mount指令把它们展示出来:

//CentOS Linux release 7.5.1804
$ mount -t cgroup
cgroup on /sys/fs/cgroup/systemd type cgroup (rw,nosuid,nodev,noexec,relatime,xattr,release_agent=/usr/lib/systemd/systemd-cgroups-agent,name=systemd)
cgroup on /sys/fs/cgroup/cpu,cpuacct type cgroup (rw,nosuid,nodev,noexec,relatime,cpuacct,cpu)
cgroup on /sys/fs/cgroup/blkio type cgroup (rw,nosuid,nodev,noexec,relatime,blkio)
cgroup on /sys/fs/cgroup/pids type cgroup (rw,nosuid,nodev,noexec,relatime,pids)
cgroup on /sys/fs/cgroup/devices type cgroup (rw,nosuid,nodev,noexec,relatime,devices)
cgroup on /sys/fs/cgroup/freezer type cgroup (rw,nosuid,nodev,noexec,relatime,freezer)
cgroup on /sys/fs/cgroup/cpuset type cgroup (rw,nosuid,nodev,noexec,relatime,cpuset)
cgroup on /sys/fs/cgroup/memory type cgroup (rw,nosuid,nodev,noexec,relatime,memory)
cgroup on /sys/fs/cgroup/net_cls,net_prio type cgroup (rw,nosuid,nodev,noexec,relatime,net_prio,net_cls)
cgroup on /sys/fs/cgroup/perf_event type cgroup (rw,nosuid,nodev,noexec,relatime,perf_event)
cgroup on /sys/fs/cgroup/hugetlb type cgroup (rw,nosuid,nodev,noexec,relatime,hugetlb)

可以看到,在/sys/fs/cgroup下面有很多诸如cpuset、cpu、 memory这样的子目录,也叫子系统。这些都是我这台机器当前可以被Cgroups进行限制的资源种类。而在子系统对应的资源种类下,你就可以看到该类资源具体可以被限制的方法。比如,对CPU子系统来说,我们就可以看到如下几个配置文件:

$ ls /sys/fs/cgroup/cpu
cgroup.clone_children  cgroup.sane_behavior  cpu.rt_period_us   cpu.stat       cpuacct.usage_percpu  system.slice
cgroup.event_control   cpu.cfs_period_us     cpu.rt_runtime_us  cpuacct.stat   notify_on_release     tasks
cgroup.procs           cpu.cfs_quota_us      cpu.shares         cpuacct.usage  release_agent         user.slice

2.举个例子(CPU限制)

1) 配置你的控制组
$ cd /sys/fs/cgroup/cpu
$ mkdir testlimit
$ ls testlimit/
cgroup.clone_children  cgroup.procs       cpu.cfs_quota_us  cpu.rt_runtime_us  cpu.stat      cpuacct.usage         notify_on_release
cgroup.event_control   cpu.cfs_period_us  cpu.rt_period_us  cpu.shares         cpuacct.stat  cpuacct.usage_percpu  tasks$ cat /sys/fs/cgroup/cpu/testlimit/cpu.cfs_quota_us
-1
$ cat /sys/fs/cgroup/cpu/testlimit/cpu.cfs_period_us 
100000

你创建的这个目录testlimit就称为一个“控制组”。你会发现,操作系统会在你新创建的目录下,自动生成该子系统对应的资源限制文件。可以看到testlimit控制组里的CPU quota还没有任何限制(即:-1),CPU period则是默认的100000us

配置一个只能使用30%cpu的限制,即长度为cfs_period的一段时间内,只能被分配到总量为cfs_quota的CPU时间。

$ echo 30000 > /sys/fs/cgroup/cpu/testlimit/cpu.cfs_quota_us

至此我们的testlimit控制组就配置好了,它限制进程在100000us里只能使用30000us的cpu时间。只是目前没有将它应用于任何进程。

2) 执行脚本
$ while : ; do : ; done &
[1] 4477

该脚本执行了一个无限循环,可以把cpu吃到100%,可以看到它在后台的进程id是4477,后面限制的时候我们会用到。

通过top查看cpu使用情况:

%Cpu0  :100.0 us,  0.0 sy,  0.0 ni,  0.0 id,  0.0 wa,  0.0 hi,  0.0 si,  0.0 st
3) 使用cgroups限制该进程的cpu

执行如下命令,使用刚才配置好的testlimit控制组,限制上面4477号进程的cpu:

$ echo 4477 > /sys/fs/cgroup/cpu/testlimit/tasks 

再次通过top查看cpu使用情况:

%Cpu0  : 30.1 us,  3.0 sy,  0.0 ni, 65.5 id,  1.0 wa,  0.0 hi,  0.3 si,  0.0 st

可以看到使用刚才创建的testlimit控制组,将cpu被限制到了30%左右。

4) 启动一个容器加上CPU时钟周期限制

接下来,我们启动一个容器,并加上cpu限制,然后看看cgroups对应的目录里有没有该容器的限制。

$ docker run -td --cpu-period 100000 --cpu-quota 200000 busybox /bin/sh -c "while : ; do : ; done"
c3e3fb30f3cbdcc707dff9f5937018c0ac6b07002d80656760026111c569ca4f//查看该容器的进程id: 26430
$ ps -x |grep '/bin/sh'
26430 pts/0    Rs+   20:52 /bin/sh -c while : ; do : ; done//查看cgroups
$ cat /sys/fs/cgroup/cpu/docker/c3e3fb30f3cbdcc707dff9f5937018c0ac6b07002d80656760026111c569ca4f/cpu.cfs_period_us 
100000
$ cat /sys/fs/cgroup/cpu/docker/c3e3fb30f3cbdcc707dff9f5937018c0ac6b07002d80656760026111c569ca4f/cpu.cfs_quota_us 
200000
$ cat /sys/fs/cgroup/cpu/docker/c3e3fb30f3cbdcc707dff9f5937018c0ac6b07002d80656760026111c569ca4f/tasks 
26430$ top
%Cpu0  : 50.8 us, 49.2 sy,  0.0 ni,  0.0 id,  0.0 wa,  0.0 hi,  0.0 si,  0.0 st

如上所示,可以通过启动容器时返回的容器ID在cgroups中找到对应的限制。

3.对照Docker源码

// New creates and initializes a new containerd server
func New(ctx context.Context, config *Config) (*Server, error) {//...if err := apply(ctx, config); err != nil {return nil, err}//...
}// apply sets config settings on the server process
func apply(ctx context.Context, config *Config) error {if config.OOMScore != 0 {log.G(ctx).Debugf("changing OOM score to %d", config.OOMScore)if err := sys.SetOOMScore(os.Getpid(), config.OOMScore); err != nil {log.G(ctx).WithError(err).Errorf("failed to change OOM score to %d", config.OOMScore)}}if config.Cgroup.Path != "" {cg, err := cgroups.Load(cgroups.V1, cgroups.StaticPath(config.Cgroup.Path))if err != nil {if err != cgroups.ErrCgroupDeleted {return err}if cg, err = cgroups.New(cgroups.V1, cgroups.StaticPath(config.Cgroup.Path), &specs.LinuxResources{}); err != nil {return err}}if err := cg.Add(cgroups.Process{Pid: os.Getpid(),}); err != nil {return err}}return nil
}

在上面代码中,创建容器时会调用apply接口,里面的cgroups.Load调用就会去加载cgroups,cg.Add把创建的容器进程加入到cgroups task中。

4.下一代Linux Cgroups

在Kernel 3.16后,引入了一个叫__DEVEL__sane_behavior的特性(还在开发试验阶段),它可以把所有子系统都挂载到根层级下,只有叶子节点可以存在tasks,非叶子节点只进行资源控制。
The unified control group hierarchy in 3.16

参考

  • 左耳朵耗子-LINUX CGROUP
  • redhat资源管理指南
  • Fixing control groups
  • The unified control group hierarchy in 3.16

这篇关于Docker技术原理之Linux Cgroups(资源限制)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/626926

相关文章

如何用Docker运行Django项目

本章教程,介绍如何用Docker创建一个Django,并运行能够访问。 一、拉取镜像 这里我们使用python3.11版本的docker镜像 docker pull python:3.11 二、运行容器 这里我们将容器内部的8080端口,映射到宿主机的80端口上。 docker run -itd --name python311 -p

linux-基础知识3

打包和压缩 zip 安装zip软件包 yum -y install zip unzip 压缩打包命令: zip -q -r -d -u 压缩包文件名 目录和文件名列表 -q:不显示命令执行过程-r:递归处理,打包各级子目录和文件-u:把文件增加/替换到压缩包中-d:从压缩包中删除指定的文件 解压:unzip 压缩包名 打包文件 把压缩包从服务器下载到本地 把压缩包上传到服务器(zip

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

【专题】2024飞行汽车技术全景报告合集PDF分享(附原数据表)

原文链接: https://tecdat.cn/?p=37628 6月16日,小鹏汇天旅航者X2在北京大兴国际机场临空经济区完成首飞,这也是小鹏汇天的产品在京津冀地区进行的首次飞行。小鹏汇天方面还表示,公司准备量产,并计划今年四季度开启预售小鹏汇天分体式飞行汽车,探索分体式飞行汽车城际通勤。阅读原文,获取专题报告合集全文,解锁文末271份飞行汽车相关行业研究报告。 据悉,业内人士对飞行汽车行业

hdu4407(容斥原理)

题意:给一串数字1,2,......n,两个操作:1、修改第k个数字,2、查询区间[l,r]中与n互质的数之和。 解题思路:咱一看,像线段树,但是如果用线段树做,那么每个区间一定要记录所有的素因子,这样会超内存。然后我就做不来了。后来看了题解,原来是用容斥原理来做的。还记得这道题目吗?求区间[1,r]中与p互质的数的个数,如果不会的话就先去做那题吧。现在这题是求区间[l,r]中与n互质的数的和

Linux 网络编程 --- 应用层

一、自定义协议和序列化反序列化 代码: 序列化反序列化实现网络版本计算器 二、HTTP协议 1、谈两个简单的预备知识 https://www.baidu.com/ --- 域名 --- 域名解析 --- IP地址 http的端口号为80端口,https的端口号为443 url为统一资源定位符。CSDNhttps://mp.csdn.net/mp_blog/creation/editor

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

金融业开源技术 术语

金融业开源技术  术语 1  范围 本文件界定了金融业开源技术的常用术语。 本文件适用于金融业中涉及开源技术的相关标准及规范性文件制定和信息沟通等活动。

Linux_kernel驱动开发11

一、改回nfs方式挂载根文件系统         在产品将要上线之前,需要制作不同类型格式的根文件系统         在产品研发阶段,我们还是需要使用nfs的方式挂载根文件系统         优点:可以直接在上位机中修改文件系统内容,延长EMMC的寿命         【1】重启上位机nfs服务         sudo service nfs-kernel-server resta