Docker技术原理之Linux Cgroups(资源限制)

2024-01-20 18:32

本文主要是介绍Docker技术原理之Linux Cgroups(资源限制),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

0.前言

首先要知道一个运行的容器,其实就是一个受到隔离和资源限制的Linux进程——对,它就是一个进程。前面我们讨论了Docker容器实现隔离用到的技术Linux namespace,本篇我们来讨论容器实现资源限制的技术 Linux CGroups。

1.关于Linux CGroups

Linux Cgroups的全称是Linux Control Groups。它最主要的作用,就是限制一个进程组能够使用的资源上限,包括CPU、内存、磁盘、网络带宽等等。此外,还能够对进程进行优先级设置,以及将进程挂起和恢复等操作。

在Linux中,Cgroups给用户暴露出来的操作接口是文件系统,即它以文件和目录的方式组织在操作系统的/sys/fs/cgroup路径下。在我的centos服务器下,用mount指令把它们展示出来:

//CentOS Linux release 7.5.1804
$ mount -t cgroup
cgroup on /sys/fs/cgroup/systemd type cgroup (rw,nosuid,nodev,noexec,relatime,xattr,release_agent=/usr/lib/systemd/systemd-cgroups-agent,name=systemd)
cgroup on /sys/fs/cgroup/cpu,cpuacct type cgroup (rw,nosuid,nodev,noexec,relatime,cpuacct,cpu)
cgroup on /sys/fs/cgroup/blkio type cgroup (rw,nosuid,nodev,noexec,relatime,blkio)
cgroup on /sys/fs/cgroup/pids type cgroup (rw,nosuid,nodev,noexec,relatime,pids)
cgroup on /sys/fs/cgroup/devices type cgroup (rw,nosuid,nodev,noexec,relatime,devices)
cgroup on /sys/fs/cgroup/freezer type cgroup (rw,nosuid,nodev,noexec,relatime,freezer)
cgroup on /sys/fs/cgroup/cpuset type cgroup (rw,nosuid,nodev,noexec,relatime,cpuset)
cgroup on /sys/fs/cgroup/memory type cgroup (rw,nosuid,nodev,noexec,relatime,memory)
cgroup on /sys/fs/cgroup/net_cls,net_prio type cgroup (rw,nosuid,nodev,noexec,relatime,net_prio,net_cls)
cgroup on /sys/fs/cgroup/perf_event type cgroup (rw,nosuid,nodev,noexec,relatime,perf_event)
cgroup on /sys/fs/cgroup/hugetlb type cgroup (rw,nosuid,nodev,noexec,relatime,hugetlb)

可以看到,在/sys/fs/cgroup下面有很多诸如cpuset、cpu、 memory这样的子目录,也叫子系统。这些都是我这台机器当前可以被Cgroups进行限制的资源种类。而在子系统对应的资源种类下,你就可以看到该类资源具体可以被限制的方法。比如,对CPU子系统来说,我们就可以看到如下几个配置文件:

$ ls /sys/fs/cgroup/cpu
cgroup.clone_children  cgroup.sane_behavior  cpu.rt_period_us   cpu.stat       cpuacct.usage_percpu  system.slice
cgroup.event_control   cpu.cfs_period_us     cpu.rt_runtime_us  cpuacct.stat   notify_on_release     tasks
cgroup.procs           cpu.cfs_quota_us      cpu.shares         cpuacct.usage  release_agent         user.slice

2.举个例子(CPU限制)

1) 配置你的控制组
$ cd /sys/fs/cgroup/cpu
$ mkdir testlimit
$ ls testlimit/
cgroup.clone_children  cgroup.procs       cpu.cfs_quota_us  cpu.rt_runtime_us  cpu.stat      cpuacct.usage         notify_on_release
cgroup.event_control   cpu.cfs_period_us  cpu.rt_period_us  cpu.shares         cpuacct.stat  cpuacct.usage_percpu  tasks$ cat /sys/fs/cgroup/cpu/testlimit/cpu.cfs_quota_us
-1
$ cat /sys/fs/cgroup/cpu/testlimit/cpu.cfs_period_us 
100000

你创建的这个目录testlimit就称为一个“控制组”。你会发现,操作系统会在你新创建的目录下,自动生成该子系统对应的资源限制文件。可以看到testlimit控制组里的CPU quota还没有任何限制(即:-1),CPU period则是默认的100000us

配置一个只能使用30%cpu的限制,即长度为cfs_period的一段时间内,只能被分配到总量为cfs_quota的CPU时间。

$ echo 30000 > /sys/fs/cgroup/cpu/testlimit/cpu.cfs_quota_us

至此我们的testlimit控制组就配置好了,它限制进程在100000us里只能使用30000us的cpu时间。只是目前没有将它应用于任何进程。

2) 执行脚本
$ while : ; do : ; done &
[1] 4477

该脚本执行了一个无限循环,可以把cpu吃到100%,可以看到它在后台的进程id是4477,后面限制的时候我们会用到。

通过top查看cpu使用情况:

%Cpu0  :100.0 us,  0.0 sy,  0.0 ni,  0.0 id,  0.0 wa,  0.0 hi,  0.0 si,  0.0 st
3) 使用cgroups限制该进程的cpu

执行如下命令,使用刚才配置好的testlimit控制组,限制上面4477号进程的cpu:

$ echo 4477 > /sys/fs/cgroup/cpu/testlimit/tasks 

再次通过top查看cpu使用情况:

%Cpu0  : 30.1 us,  3.0 sy,  0.0 ni, 65.5 id,  1.0 wa,  0.0 hi,  0.3 si,  0.0 st

可以看到使用刚才创建的testlimit控制组,将cpu被限制到了30%左右。

4) 启动一个容器加上CPU时钟周期限制

接下来,我们启动一个容器,并加上cpu限制,然后看看cgroups对应的目录里有没有该容器的限制。

$ docker run -td --cpu-period 100000 --cpu-quota 200000 busybox /bin/sh -c "while : ; do : ; done"
c3e3fb30f3cbdcc707dff9f5937018c0ac6b07002d80656760026111c569ca4f//查看该容器的进程id: 26430
$ ps -x |grep '/bin/sh'
26430 pts/0    Rs+   20:52 /bin/sh -c while : ; do : ; done//查看cgroups
$ cat /sys/fs/cgroup/cpu/docker/c3e3fb30f3cbdcc707dff9f5937018c0ac6b07002d80656760026111c569ca4f/cpu.cfs_period_us 
100000
$ cat /sys/fs/cgroup/cpu/docker/c3e3fb30f3cbdcc707dff9f5937018c0ac6b07002d80656760026111c569ca4f/cpu.cfs_quota_us 
200000
$ cat /sys/fs/cgroup/cpu/docker/c3e3fb30f3cbdcc707dff9f5937018c0ac6b07002d80656760026111c569ca4f/tasks 
26430$ top
%Cpu0  : 50.8 us, 49.2 sy,  0.0 ni,  0.0 id,  0.0 wa,  0.0 hi,  0.0 si,  0.0 st

如上所示,可以通过启动容器时返回的容器ID在cgroups中找到对应的限制。

3.对照Docker源码

// New creates and initializes a new containerd server
func New(ctx context.Context, config *Config) (*Server, error) {//...if err := apply(ctx, config); err != nil {return nil, err}//...
}// apply sets config settings on the server process
func apply(ctx context.Context, config *Config) error {if config.OOMScore != 0 {log.G(ctx).Debugf("changing OOM score to %d", config.OOMScore)if err := sys.SetOOMScore(os.Getpid(), config.OOMScore); err != nil {log.G(ctx).WithError(err).Errorf("failed to change OOM score to %d", config.OOMScore)}}if config.Cgroup.Path != "" {cg, err := cgroups.Load(cgroups.V1, cgroups.StaticPath(config.Cgroup.Path))if err != nil {if err != cgroups.ErrCgroupDeleted {return err}if cg, err = cgroups.New(cgroups.V1, cgroups.StaticPath(config.Cgroup.Path), &specs.LinuxResources{}); err != nil {return err}}if err := cg.Add(cgroups.Process{Pid: os.Getpid(),}); err != nil {return err}}return nil
}

在上面代码中,创建容器时会调用apply接口,里面的cgroups.Load调用就会去加载cgroups,cg.Add把创建的容器进程加入到cgroups task中。

4.下一代Linux Cgroups

在Kernel 3.16后,引入了一个叫__DEVEL__sane_behavior的特性(还在开发试验阶段),它可以把所有子系统都挂载到根层级下,只有叶子节点可以存在tasks,非叶子节点只进行资源控制。
The unified control group hierarchy in 3.16

参考

  • 左耳朵耗子-LINUX CGROUP
  • redhat资源管理指南
  • Fixing control groups
  • The unified control group hierarchy in 3.16

这篇关于Docker技术原理之Linux Cgroups(资源限制)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/626926

相关文章

Linux使用fdisk进行磁盘的相关操作

《Linux使用fdisk进行磁盘的相关操作》fdisk命令是Linux中用于管理磁盘分区的强大文本实用程序,这篇文章主要为大家详细介绍了如何使用fdisk进行磁盘的相关操作,需要的可以了解下... 目录简介基本语法示例用法列出所有分区查看指定磁盘的区分管理指定的磁盘进入交互式模式创建一个新的分区删除一个存

Linux使用dd命令来复制和转换数据的操作方法

《Linux使用dd命令来复制和转换数据的操作方法》Linux中的dd命令是一个功能强大的数据复制和转换实用程序,它以较低级别运行,通常用于创建可启动的USB驱动器、克隆磁盘和生成随机数据等任务,本文... 目录简介功能和能力语法常用选项示例用法基础用法创建可启动www.chinasem.cn的 USB 驱动

高效管理你的Linux系统: Debian操作系统常用命令指南

《高效管理你的Linux系统:Debian操作系统常用命令指南》在Debian操作系统中,了解和掌握常用命令对于提高工作效率和系统管理至关重要,本文将详细介绍Debian的常用命令,帮助读者更好地使... Debian是一个流行的linux发行版,它以其稳定性、强大的软件包管理和丰富的社区资源而闻名。在使用

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Linux Mint Xia 22.1重磅发布: 重要更新一览

《LinuxMintXia22.1重磅发布:重要更新一览》Beta版LinuxMint“Xia”22.1发布,新版本基于Ubuntu24.04,内核版本为Linux6.8,这... linux Mint 22.1「Xia」正式发布啦!这次更新带来了诸多优化和改进,进一步巩固了 Mint 在 Linux 桌面

LinuxMint怎么安装? Linux Mint22下载安装图文教程

《LinuxMint怎么安装?LinuxMint22下载安装图文教程》LinuxMint22发布以后,有很多新功能,很多朋友想要下载并安装,该怎么操作呢?下面我们就来看看详细安装指南... linux Mint 是一款基于 Ubuntu 的流行发行版,凭借其现代、精致、易于使用的特性,深受小伙伴们所喜爱。对

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

什么是 Linux Mint? 适合初学者体验的桌面操作系统

《什么是LinuxMint?适合初学者体验的桌面操作系统》今天带你全面了解LinuxMint,包括它的历史、功能、版本以及独特亮点,话不多说,马上开始吧... linux Mint 是一款基于 Ubuntu 和 Debian 的知名发行版,它的用户体验非常友好,深受广大 Linux 爱好者和日常用户的青睐,

Linux(Centos7)安装Mysql/Redis/MinIO方式

《Linux(Centos7)安装Mysql/Redis/MinIO方式》文章总结:介绍了如何安装MySQL和Redis,以及如何配置它们为开机自启,还详细讲解了如何安装MinIO,包括配置Syste... 目录安装mysql安装Redis安装MinIO总结安装Mysql安装Redis搜索Red

SpringCloud配置动态更新原理解析

《SpringCloud配置动态更新原理解析》在微服务架构的浩瀚星海中,服务配置的动态更新如同魔法一般,能够让应用在不重启的情况下,实时响应配置的变更,SpringCloud作为微服务架构中的佼佼者,... 目录一、SpringBoot、Cloud配置的读取二、SpringCloud配置动态刷新三、更新@R