xxl-job使用(小白也看得懂)

2024-01-20 12:30
文章标签 使用 小白 看得懂 xxl job

本文主要是介绍xxl-job使用(小白也看得懂),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

分布式任务调度

在微服务架构体系中,服务之间通过网络交互来完成业务处理的,在分布式架构下,一个服务往往会部署多个实例来运行我们的业务,如果在这种分布式系统环境下运行任务调度,我们称之为分布式任务调度

在当体项目中我们直接使用异步任务就可以实现发布任务的效果,但是在微服务中,每个服务是独立的,任务和任务之间是无法协调的,所以我们需要使用xxl-job。

xxl-job简介

XXL-JOB是一个分布式任务调度平台,其核心设计目标是开发迅速、学习简单、轻量级、易扩展。现已开放源代码并接入多家公司线上产品线,开箱即用。

xxl-job架构图

安装xxl-job

通过docker安装xxl-job

在云服务器中创建目录 /data/applogs,该目录用于挂载xxl-job-admin-applogs。设置对应的数据库信息,设置开机自启动,映射端口,并进行挂载。

1.在搭建之前我们需要先要在云服务器中准备好xxl-job的数据库xxl_job,并初始化数据库。

初始化数据库的sql脚本为:数据库初始化脚本

 2.拖取xxl-job的镜像。

docker pull xuxueli/xxl-job-admin:2.3.0

3.创建目录。

mkdir /data/applogs

 4.启动xxl-job的容器(在此之前需要开放对应的端口)。

docker run -d \
-e PARAMS="--spring.datasource.url=jdbc:mysql://139.9.544.116:3306/xxl_job?useUnicode=true&characterEncoding=UTF-8&autoReconnect=true&serverTimezone=UTC \
--spring.datasource.username=xxl_job \
--spring.datasource.password=123456 \
--spring.datasource.driver-class-name=com.mysql.jdbc.Driver" \
-p  28080:8080 \
-v xxl-job-admin-applogs:/data/applogs \
--name my-xxl-job-admin-2.3.0  \
-d xuxueli/xxl-job-admin:2.3.0

效果图为下:

输入定时任务的管理界面的地址为: 139.9.567.564:28080/xxl-job-admin(IP根据自己修改)

初始的账号: admin 密码:123456
效果图为下:

数据库中表的信息

  • xxl_job_lock:任务调度锁表;
  • xxl_job_group:执行器信息表,维护任务执行器信息;
  • xxl_job_info:调度扩展信息表: 用于保存XXL-JOB调度任务的扩展信息,如任务分组、任务名、机器地址、执行器、执行入参和报警邮件等等;
  • xxl_job_log:调度日志表: 用于保存XXL-JOB任务调度的历史信息,如调度结果、执行结果、调度入参、调度机器和执行器等等;
  • xxl_job_log_report:调度日志报表:用户存储XXL-JOB任务调度日志的报表,调度中心报表功能页面会用到;
  • xxl_job_logglue:任务GLUE日志:用于保存GLUE更新历史,用于支持GLUE的版本回溯功能;
  • xxl_job_registry:执行器注册表,维护在线的执行器和调度中心机器地址信息;
  • xxl_job_user:系统用户表;

xxl-job的使用

使用方式:在服务中编写好执行器(也就是执行的方法)将其注册到xxl-job中,在xxl-job的控制面板中设置定时任务去调用执行器,最终实现定时任务。

xxl-job支持的路由策略非常丰富

  • FIRST(第一个):固定选择第一个机器;
  • LAST(最后一个):固定选择最后一个机器;
  • ROUND(轮询):在线的机器按照顺序一次执行一个
  • RANDOM(随机):随机选择在线的机器;
  • CONSISTENT_HASH(一致性HASH):每个任务按照Hash算法固定选择某一台机器,且所有任务均匀散列在不同机器上。
  • LEAST_FREQUENTLY_USED(最不经常使用):使用频率最低的机器优先被选举;
  • LEAST_RECENTLY_USED(最近最久未使用):最久未使用的机器优先被选举;
  • FAILOVER(故障转移):按照顺序依次进行心跳检测,第一个心跳检测成功的机器选定为目标执行器并发起调度;
  • BUSYOVER(忙碌转移):按照顺序依次进行空闲检测,第一个空闲检测成功的机器选定为目标执行器并发起调度;
  • SHARDING_BROADCAST(分片广播):广播触发对应集群中所有机器执行一次任务,同时系统自动传递分片参数;可根据分片参数开发分片任务; 

 xxl-job使用格式

引入对应的依赖

<dependency><groupId>com.xuxueli</groupId><artifactId>xxl-job-core</artifactId>
</dependency>

创建配置类XxlJobConfig用于配置必要信息

import com.xxl.job.core.executor.impl.XxlJobSpringExecutor;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;/*** xxl-job config*/
@Configuration
public class XxlJobConfig {private Logger logger = LoggerFactory.getLogger(XxlJobConfig.class);@Value("${xxl.job.admin.addresses}")private String adminAddresses;@Value("${xxl.job.accessToken:}")private String accessToken;@Value("${xxl.job.executor.appname}")private String appname;@Value("${xxl.job.executor.address:}")private String address;@Value("${xxl.job.executor.ip:}")private String ip;@Value("${xxl.job.executor.port:0}")private int port;@Value("${xxl.job.executor.logpath:}")private String logPath;@Value("${xxl.job.executor.logretentiondays:}")private int logRetentionDays;//自动配置到ioc中@Beanpublic XxlJobSpringExecutor xxlJobExecutor() {XxlJobSpringExecutor xxlJobSpringExecutor = new XxlJobSpringExecutor();xxlJobSpringExecutor.setAdminAddresses(adminAddresses);xxlJobSpringExecutor.setAppname(appname);xxlJobSpringExecutor.setAddress(address);xxlJobSpringExecutor.setIp(ip);xxlJobSpringExecutor.setPort(port);xxlJobSpringExecutor.setAccessToken(accessToken);xxlJobSpringExecutor.setLogPath(logPath);xxlJobSpringExecutor.setLogRetentionDays(logRetentionDays);return xxlJobSpringExecutor;}}

编写执行器JobHandler(例子)

import cn.hutool.core.util.RandomUtil;
import com.xxl.job.core.context.XxlJobHelper;
import com.xxl.job.core.handler.annotation.XxlJob;
import org.springframework.stereotype.Component;import java.time.LocalDateTime;
import java.util.Arrays;
import java.util.List;/*** 任务处理器*/
@Component
public class JobHandler {private List<Integer> dataList = Arrays.asList(1, 2, 3, 4, 5);/*** 普通任务*/@XxlJob("firstJob")public void firstJob() throws Exception {System.out.println("firstJob执行了.... " + LocalDateTime.now());for (Integer data : dataList) {System.out.println("data= {}" + data);Thread.sleep(RandomUtil.randomInt(100, 500));}System.out.println("firstJob执行结束了.... " + LocalDateTime.now());}
}

在@XxlJob中配置的属性就是执行器的名字。

进入任务调度中心发布定时任务,设置执行器的AppName也就是当前微服务的application.name

选择执行器,新建任务。

 在新建任务中JobHandler就是我们在微服务中编写的任务处理器的名称,该名称就是对应的@XxlJob中属性的值。

进行测试,点击执行一次,弹出窗口直接迪点击确认。

该测试处理器中,就是将属性dataList遍历一遍。

这是单个xxl-job的情况,接下来我吗们需要实现xxl-job集群的使用。

在Handler中编写一个处理器(通过取模的方式,让每个xxl-job都可以处理到任务,例如:三个集群,我们就以三取模,每个xxl-job就分别处理值为 0,1 ,2的任务

import cn.hutool.core.util.RandomUtil;
import com.xxl.job.core.context.XxlJobHelper;
import com.xxl.job.core.handler.annotation.XxlJob;
import org.springframework.stereotype.Component;import java.time.LocalDateTime;
import java.util.Arrays;
import java.util.List;/*** 任务处理器*/
@Component
public class JobHandler {private List<Integer> dataList = Arrays.asList(1, 2, 3, 4, 5);/*** 分片式任务*/@XxlJob("shardingJob")public void shardingJob() throws Exception {// 分片参数// 分片节点总数int shardTotal = XxlJobHelper.getShardTotal();// 当前节点下标,从0开始int shardIndex = XxlJobHelper.getShardIndex();System.out.println("shardingJob执行了.... " + LocalDateTime.now());for (Integer data : dataList) {if (data % shardTotal == shardIndex) {System.out.println("data= {}"+ data);Thread.sleep(RandomUtil.randomInt(100, 500));}}System.out.println("shardingJob执行结束了.... " + LocalDateTime.now());}
}

在任务管理中添加一个新的任务

进行测试,两个xxl-job都参与了任务的处理。

 真正意义上实现了轮询的效果,而在路由策略的轮询的效果则是每一个xxl-job按顺序单独处理一次任务,这样任务还是没有达到负载均衡的效果。

这篇关于xxl-job使用(小白也看得懂)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/626011

相关文章

java图像识别工具类(ImageRecognitionUtils)使用实例详解

《java图像识别工具类(ImageRecognitionUtils)使用实例详解》:本文主要介绍如何在Java中使用OpenCV进行图像识别,包括图像加载、预处理、分类、人脸检测和特征提取等步骤... 目录前言1. 图像识别的背景与作用2. 设计目标3. 项目依赖4. 设计与实现 ImageRecogni

python管理工具之conda安装部署及使用详解

《python管理工具之conda安装部署及使用详解》这篇文章详细介绍了如何安装和使用conda来管理Python环境,它涵盖了从安装部署、镜像源配置到具体的conda使用方法,包括创建、激活、安装包... 目录pytpshheraerUhon管理工具:conda部署+使用一、安装部署1、 下载2、 安装3

Mysql虚拟列的使用场景

《Mysql虚拟列的使用场景》MySQL虚拟列是一种在查询时动态生成的特殊列,它不占用存储空间,可以提高查询效率和数据处理便利性,本文给大家介绍Mysql虚拟列的相关知识,感兴趣的朋友一起看看吧... 目录1. 介绍mysql虚拟列1.1 定义和作用1.2 虚拟列与普通列的区别2. MySQL虚拟列的类型2

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

关于@MapperScan和@ComponentScan的使用问题

《关于@MapperScan和@ComponentScan的使用问题》文章介绍了在使用`@MapperScan`和`@ComponentScan`时可能会遇到的包扫描冲突问题,并提供了解决方法,同时,... 目录@MapperScan和@ComponentScan的使用问题报错如下原因解决办法课外拓展总结@

mysql数据库分区的使用

《mysql数据库分区的使用》MySQL分区技术通过将大表分割成多个较小片段,提高查询性能、管理效率和数据存储效率,本文就来介绍一下mysql数据库分区的使用,感兴趣的可以了解一下... 目录【一】分区的基本概念【1】物理存储与逻辑分割【2】查询性能提升【3】数据管理与维护【4】扩展性与并行处理【二】分区的

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超

Linux使用fdisk进行磁盘的相关操作

《Linux使用fdisk进行磁盘的相关操作》fdisk命令是Linux中用于管理磁盘分区的强大文本实用程序,这篇文章主要为大家详细介绍了如何使用fdisk进行磁盘的相关操作,需要的可以了解下... 目录简介基本语法示例用法列出所有分区查看指定磁盘的区分管理指定的磁盘进入交互式模式创建一个新的分区删除一个存

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

SpringBoot使用Apache Tika检测敏感信息

《SpringBoot使用ApacheTika检测敏感信息》ApacheTika是一个功能强大的内容分析工具,它能够从多种文件格式中提取文本、元数据以及其他结构化信息,下面我们来看看如何使用Ap... 目录Tika 主要特性1. 多格式支持2. 自动文件类型检测3. 文本和元数据提取4. 支持 OCR(光学