巧用 Matplotlib 动画,让你的 Python 可视化大放异彩

2024-01-20 07:10

本文主要是介绍巧用 Matplotlib 动画,让你的 Python 可视化大放异彩,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

640?wx_fmt=jpeg

柠檬2069
点击右侧关注,遇见更好的自己!

巧用 Matplotlib 动画

让你的 Python 可视化大放异彩

640?wx_fmt=jpeg

作者:Tony Yiu

翻译:Hanz

整理:Lemonbit

译文出品:Python数据之道

—  1 

前言

如果你对本文的代码感兴趣,可以去 Github (文末提供)里查看。第一次运行的时候会报一个错误(还没找到解决办法),不过只要再运行一次就正常了。
这篇文章虽然不是篇典型的数据科学类文章,不过它涉及到数据科学以及商业智能的应用。Python 的 Matplotlib 是最常用的图表绘制以及数据可视化库。我们对折线图、柱状图以及热力图都比较熟悉,但你知道用 Matplotlib 还能做简单的动画吗?
下面就是用 Matplotlib 制作动画的例子。展示的是 John Conway 的 《The Game of Life》,这是一个 Metis(数据科学夏令营)中的编程挑战题目,同时给了我一个机会来制作我的第一个 Python 动画。看看结果的动图:
640?wx_fmt=gif

这篇文章的重点还是主要放在 python 中如何用 Matploylib 制作动画。
但如果你不太熟悉模拟游戏的话(它更像是可以看的模拟动画,而非可以玩的游戏),我来给大家介绍一下规则:
  • 一开始先设置一个 N×N 的网格(我的动画中用的是 50×50 );

  • 接着随机地向格子中填充“小细胞”(一开始随机地从 2500 个格子中选取 1500 个进行填充);

  • 如果邻居小细胞少于等于 1 个,那格子中的小细胞会死掉;

  • 如果邻居大于等于 4 个的也会死掉;

  • 只有 2 个或 3 个邻居时可以生存;

  • 空的格子中如果正好有 3 个邻居,则会长出 1 个新的“小细胞”;

—  2 

建立网格

我们首先导入所需的库。
import time	
from IPython import display	
import matplotlib.pyplot as plt	
import matplotlib.animation as animation
我们会利用  Matploylib 动画模块中的 FuncAnimation() 函数。 FuncAnimation()是通过多次调用一个函数并逐次更新图片来实现让图片动起来的。 我们来一步步地实现这个过程。
但首先,我们需要先初始化我们的网格。下面的几行代码用来存储我们输入的数据:
  • 我们需要一个 50×50 大小的网格;

  • pad 变量可以使得计算邻居变得更容易。通过在边界外添加一层空白格子,我们就不需要额外再写一个逻辑来处理网格的边界。因此我们 50×50 的网格其实是被一圈空白格子包围着,这使得实际的 numpy 序列的大小为 52×52;

  • initial_cels 变量表示在网格启动的时候我们想要多少“小细胞”。他们会被随机地分布在网格上。

# Input variables for the board	
boardsize = 50        # board will be X by X where X = boardsize	
pad = 2               # padded border, do not change this!	
initial_cells = 1500  # this number of initial cells will be placed	# in randomly generated positions
接下来我们随机地生成一系列“小细胞”的初始坐标(上面我们选择了 1500 个)。把这些坐标存储在  pos_list 变量中。
# Get a list of random coordinates so that we can initialize	
# board with randomly placed organisms	
pos_list = []	
for i in range(initial_cells):	pos_list.append([random.randint(1, boardsize),	random.randint(1, boardsize)])
然后我们是时候该初始化网格了。我们会用一组叫  my_board 的 numpy 序列来代表我们的网格——我们先生成一个 52×52 数值为 0 的矩阵序列作为开始(比 50×50 大是由于增加了空白边缘),然后调用  init_board() 函数来根据  pos_list 中的坐标把“小细胞”填充到网格中。辅助函数的具体细节我不再展开讲了,不过我把他们都整理到我的 Github 上了。
# Initialize the board	
my_board = np.zeros((boardsize+pad, boardsize+pad))	
my_board = init_board(pos_list, my_board)

—  3 

制作网格动画

这是我们最期待的部分——动画!首先,我们需要完善一些配置。下面的几行代码用来生成展示我们动画的  mtplotlib 图框。
# Required line for plotting the animation	
%matplotlib notebook	
# Initialize the plot of the board that will be used for animation	
fig = plt.gcf()
接下来制作我们的第一帧。  mtplotlib 中的  imshow() 函数可以接收一组  numpy 矩阵然后返回一张图片。很酷吧!
# Show first image - which is the initial board	
im = plt.imshow(my_board)	
plt.show()
传入  imshow() 的变量是我们的初始的网格  my_board。生成的图片长这样:
640?wx_fmt=png
现在我们需要写一个可以给  FuncAnimation() 调用的辅助函数。  animate() 函数接受一帧画面作为输入充当计数器。这个画面计数器就是  FuncAnimation() 和  animate() 函数沟通的桥梁——在每一个时间点(也就是每一帧),它都会调用一次  animate()。然后  animate() 会逐次使用辅助函数  update_board() 来对网格进行迭代。最后,  set_data() 函数将图片更新为迭代后的网格,这就完成了。
# Helper function that updates the board and returns a new image of	
# the updated board animate is the function that FuncAnimation calls	
def animate(frame):	im.set_data(update_board(my_board))	return im,
一切顺利!我们准备调用  FuncAnimation() 函数了。注意输入的参数:
  • fig 是我们在前面创建的用来装载我们的动画的图形变量;

  • animate 是 FuncAnimation() 用画面计数器进行沟通的函数(自动传入,不需要特别声明)

  • frames 表示我们希望动画持续多少帧,在这里我们想要动画的长度为 200 帧;

  • interval 表示每一帧之间间隔的毫秒数。我们想要每帧之间间隔 50 毫秒。
# This line creates the animation	
anim = animation.FuncAnimation(fig, animate, frames=200,	interval=50)
就这么简单!不是很难吧?为了庆祝我们成功制作动画,我再送大家一个动画:
640?wx_fmt=gif

—  4 

总结

希望这篇文章能帮到大家。在结束之前,让我来帮助大家脑补更多我们今天学到的动画功能在数据科学上的应用:
  • 一个个地画出蒙特卡洛模拟数据,你能观察到最终的分布是如何逐步形成的;

  • 按顺序遍历时间序列数据,可以描绘你的模型或数据在新的观察角度下有什么表现;

  • 当你改变输入参数时,比如族群数,可以展现你的算法是如何划分族群的;

  • 根据时间或不同的数据子集生成关联热力图,用于观察不同的样本是如何影响你的模型的预期参数的。


Github: https://github.com/yiuhyuk/game_of_life
来源:https://towardsdatascience.com/spice-up-your-python-visualizations-with-matplotlib-animations-d437d7e98e67

本文来自公众号读者翻译,欢迎各位童鞋向公号投稿,点击下面图片了解详情!

译者简介
Hanz,港科大硕士,三年互联网产品经理。自学数据分析及人工智能技术,现于美国梅奥医院医学信息实验室担任研究员。

-------------------End-------------------

640?wx_fmt=jpeg

「Python数据之道 」建立了读者交流群,大家可以添加管理员微信进行加群
扫描添加好友
回复 “ 资源
  • 可视化神器推荐(Plotly Express)

Python数据之道  
让数据更有价值
回复 “600”,
获取《Python知识手册》
同学们,支持就请右下角点640?wx_fmt=gif

这篇关于巧用 Matplotlib 动画,让你的 Python 可视化大放异彩的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/625175

相关文章

python安装whl包并解决依赖关系的实现

《python安装whl包并解决依赖关系的实现》本文主要介绍了python安装whl包并解决依赖关系的实现,文中通过图文示例介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录一、什么是whl文件?二、我们为什么需要使用whl文件来安装python库?三、我们应该去哪儿下

Python脚本实现图片文件批量命名

《Python脚本实现图片文件批量命名》这篇文章主要为大家详细介绍了一个用python第三方库pillow写的批量处理图片命名的脚本,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言源码批量处理图片尺寸脚本源码GUI界面源码打包成.exe可执行文件前言本文介绍一个用python第三方库pi

Python中多线程和多进程的基本用法详解

《Python中多线程和多进程的基本用法详解》这篇文章介绍了Python中多线程和多进程的相关知识,包括并发编程的优势,多线程和多进程的概念、适用场景、示例代码,线程池和进程池的使用,以及如何选择合适... 目录引言一、并发编程的主要优势二、python的多线程(Threading)1. 什么是多线程?2.

Python爬虫selenium验证之中文识别点选+图片验证码案例(最新推荐)

《Python爬虫selenium验证之中文识别点选+图片验证码案例(最新推荐)》本文介绍了如何使用Python和Selenium结合ddddocr库实现图片验证码的识别和点击功能,感兴趣的朋友一起看... 目录1.获取图片2.目标识别3.背景坐标识别3.1 ddddocr3.2 打码平台4.坐标点击5.图

Python自动化Office文档处理全攻略

《Python自动化Office文档处理全攻略》在日常办公中,处理Word、Excel和PDF等Office文档是再常见不过的任务,手动操作这些文档不仅耗时耗力,还容易出错,幸运的是,Python提供... 目录一、自动化处理Word文档1. 安装python-docx库2. 读取Word文档内容3. 修改

Python重命名文件并移动到对应文件夹

《Python重命名文件并移动到对应文件夹》在日常的文件管理和处理过程中,我们可能会遇到需要将文件整理到不同文件夹中的需求,下面我们就来看看如何使用Python实现重命名文件并移动到对应文件夹吧... 目录检查并删除空文件夹1. 基本需求2. 实现代码解析3. 代码解释4. 代码执行结果5. 总结方法补充在

Python自动化办公之合并多个Excel

《Python自动化办公之合并多个Excel》在日常的办公自动化工作中,尤其是处理大量数据时,合并多个Excel表格是一个常见且繁琐的任务,下面小编就来为大家介绍一下如何使用Python轻松实现合... 目录为什么选择 python 自动化目标使用 Python 合并多个 Excel 文件安装所需库示例代码

Python使用Pandas对比两列数据取最大值的五种方法

《Python使用Pandas对比两列数据取最大值的五种方法》本文主要介绍使用Pandas对比两列数据取最大值的五种方法,包括使用max方法、apply方法结合lambda函数、函数、clip方法、w... 目录引言一、使用max方法二、使用apply方法结合lambda函数三、使用np.maximum函数

Python调用Orator ORM进行数据库操作

《Python调用OratorORM进行数据库操作》OratorORM是一个功能丰富且灵活的PythonORM库,旨在简化数据库操作,它支持多种数据库并提供了简洁且直观的API,下面我们就... 目录Orator ORM 主要特点安装使用示例总结Orator ORM 是一个功能丰富且灵活的 python O

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何