跳表的设计思路,值得每一个程序员学习

2024-01-20 04:48

本文主要是介绍跳表的设计思路,值得每一个程序员学习,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

学习《数据结构与算法之美》中的第 17 节 [为什么redis一定要用跳表来实现有序集合]后,觉得很有价值,以自己的理解整理出下文,分享给爱学习的你,希望你可以看懂。

上篇文章二分法解决妹子遇到的难题 介绍了二分查找算法法的强大之处。二分查找算法之所以能达到 O(logn) 这样高效的一个重要原因在于它所依赖的数据结构是数组,数组支持随机访问一个元素,通过下标很容易定位到中间元素。而链表是不支持随机访问的,只能从头到尾依次访问。但是数组有数组的局限性,比如需要连续的内存空间,插入删除操作会引起数组的扩容和元素移动,链表有链表的优势,链表不需要先申请连续的空间,插入删除操作的效率非常高。在很多情况下,数据是通过链表这种数据结构存储的,如果是有序链表,真的就没有办法使用二分查找算法了吗?

实际上对有序链表稍加改造,我们就可以对链表进行二分查找。这就是我们要说的跳表。下面我们来看一下,跳表是怎么跳的。

image.png

上图是一个简单的有序的单链表,如果要查找某个数据,只能从头至尾遍历链表,查找到值与给定元素时返回该结点,这样的查询效率很低,时间复杂度是为O(n)。

假如对链表进行改造,先对链表中每两个节点建立第一级索引,再对第一级索引每两个节点建立第二级索引。如下图所示:

对于上图中的带二级索引的链表中,我们查询元素 16,先从第二级索引查询 1 -> 7->13,发现16大于13 ,然后通过 13 的 down 指针找到第一级索引的 17,发现 16 小于17 ,再通过13 的 down 指针找到链表中的 16,只需要遍历 6 个节点就完成 16 的查找。如果在单链表中直接查找 16 的话,只能顺序遍历,需要遍历 10 个节点,是不是效率上有所提升呢,由于数据量较小,遍历 10 个节点到遍历 6 个节点你可能觉得没有提升多少性能,那么请看下图:

从图中我们可以看出,原来没有索引的时候,查找 62 需要遍历 62 个结点,现在只需要遍历 11 个结点,速度是不是提高了很多?所以,当链表的长度 n 比较大时,比如 1000、10000 的时候,在构建索引之后,查找效率的提升就会非常明显。

这种带多级索引的链表,就是跳表。,是不是很像数据库中的索引?

跳表有多快?

单链表的查找一个元素的时间复杂度为O(n),那么跳表的时间复杂度是多少?

假如链表中有 n 个元素,我们每两个节点建立一个索引,那么第 1 级索引的结点个数就是 n/2 ,第二级就是 n/4,第三级就是 n/8, 依次类推,也就是说第 k 级索引的结点个数是第 k-1 级索引的结点个数的 1/2,那么第k级索引的节点个数为 n 除以 2 的 k 次方,即 n/(2^k)。

假设索引有 h 级,最高级的索引有 2 个结点。通过上面的公式,我们可以得到 n/(2^h) = 2,得到 h=log2n - 1,包含原始链表这一层的话,跳表的高度就是 log2n,假设每层需要访问 m 个结点,那么总的时间复杂度就是O(m*log2n)。而每层需要访问的 m 个结点,m 的最大值不超过 3,这里为什么是 3 ,可以自己试着走一个。

因此跳表的时间复杂度为O(3log2n) = O(log2n)

跳表有多占内存?

天下没有免费的午餐,时间复杂度能做到 O(logn) 是以建立在多级索引的基础之上,这会导致内存占用增加,那么跳表的空间复杂度是多少呢?

假如有 n 个元素的链表,第一级索引为 n/2 个,第二级为 n/4 个,第三级为 n/8 个,…,最后一级为 2 个。这几级索引的结点总和就是n/2+n/4+n/8…+8+4+2=n-2。所以,跳表的空间复杂度是 O(n)。也就是说,如果将包含 n 个结点的单链表构造成跳表,我们需要额外再用接近 n 个结点的存储空间。那我们有没有办法降低索引占用的内存空间呢?

假如每 3 个节点抽取一个作为索引,同样的方法,可以计算出空间复杂度为 O(n/2) ,已经节约一半的存储空间了。

实际上,在软件开发中,我们不必太在意索引占用的额外空间。在讲数据结构和算法时,我们习惯性地把要处理的数据看成整数,但是在实际的软件开发中,原始链表中存储的有可能是很大的对象,而索引结点只需要存储几个指针,并不需要存储对象,所以当对象比索引结点大很多时,那索引占用的额外空间就可以忽略了。

跳表如何实现

跳表这种拿空间换时间的思想非常巧妙。那么如何编程实现一个跳表的数据结构呢?

其实,知道与践行之间隔着巨大的鸿沟,知道那么多的算法,可是仍写不出牛逼的代码。还是要多写多练,不然就会被说 talk is cheap,show me the code。

编码之前,应该思考一下跳表应支持的功能:
1、插入一个元素
2、删除一个元素
3、查找一个元素
4、查找一个区间的元素
5、输出有序序列

其实 redis 中有序集合支持的核心操作也就是这几个。这里说下为什么 redis 使用跳表而不使用红黑树。

1、红黑树在查找区间元素的效率没有跳表高,其他操作时间复杂度一致。
2、相比红黑树,跳表的实现还是简单的,简单就意味着不容易出错,bug 少,稳定,易读,易维护。
3、跳表更加灵活,通过改变索引构建策略,有效平衡效率和内存消耗。

0、跳表的数据结构 (python)

链表结点

class ListNode:def __init__(self, data = None):self._data = dataself._forwards = []   # 存放类似指针/引用的数组,占用空间很小

这里的 _data 是 ListNode 的变量,前而加 _data 表示这是一个私有变量,虽然你能在类的外部修改它,但你最好不要这样做。(Python 在编码规范上并不阻止你做一些破坏(灵活),全靠你自觉)
_data 这里是做比较用的,在实际应用中,你可以这样写:

class ListNode:def __init__(self, key=None, value  = None):self._key = keyself._value = valueself._forwards = []   # 存放类似指针/引用的数组,占用空间很小

这里的 _key 就相当于上述的 _data。

跳表的类

class SkipList:_MAX_LEVEL = 4 def __init__(self):self._level_count = 1self._head = ListNode()self._head._forwards = [None] * self._MAX_LEVELdef find(self, value):'''查找一个元素,返回一个 ListNode 对象'''passdef find_range(self, begin_value, end_value) :'''查找一个元素,返回一组有序 ListNode 对象'''passdef insert(self, value):'''插入一个元素,返回 True 或 False'''passdef delete(self, value):'''删除一个元素,返回 True 或 False'''passdef _random_level(self, p = 0.5):'''返回随机层数'''passdef pprint(self):'''打印跳表''

这篇关于跳表的设计思路,值得每一个程序员学习的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/624823

相关文章

JAVA利用顺序表实现“杨辉三角”的思路及代码示例

《JAVA利用顺序表实现“杨辉三角”的思路及代码示例》杨辉三角形是中国古代数学的杰出研究成果之一,是我国北宋数学家贾宪于1050年首先发现并使用的,:本文主要介绍JAVA利用顺序表实现杨辉三角的思... 目录一:“杨辉三角”题目链接二:题解代码:三:题解思路:总结一:“杨辉三角”题目链接题目链接:点击这里

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学