Python自动化测试中APScheduler Flask的应用示例

2024-01-20 00:04

本文主要是介绍Python自动化测试中APScheduler Flask的应用示例,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

使用背景
实际项目中,需要验证打点数据在各个系统中收集是否一致,而部分节点打点数据收集是通过异步任务实现的,等待时间比较久。为应对业务异步操作处理,实现异步数据的收集,经过调研后,选择了 APScheduler 框架。


什么是 APScheduler 框架?
APScheduler 是基于 Quartz(一个功能丰富的开源任务调度系统) 的一个 Python 定时任务框架,使用起来简单且方便,提供了基于日期、固定时间间隔以及 crontab 类型的任务,并且可以持久化任务,基于这些功能可以快速实现 python 的定时轮询任务系统。

使用 APScheduler 框架,可以通过 pip 安装

1

pip install apscheduler

APScheduler 框架包含四个组成部分

触发器 (trigger)触发器包含调度逻辑,每一个作业有它自己的触发器,用于决定接下来哪一个作业会运行;除了他们自己初始的配置,触发器本身是无状态的。

作业存储 (job store)作业存储存储被调度的作业,默认的作业存储是简单的将作业保存到内存中,如果选择其他方式也可以将作业保存到数据库中;一个作业数据的保存将会在持久化作业存储的时候被序列化,然后在加载时被反序列化;调度器无法分享同一个作业存储。

执行器 (executor)执行器处理作业的运行,一般通过在作业中提交制定好的可调用对象到一个线程中或者线程池中来执行;在作业完成时,执行器会去通知调度器。

调度器 (scheduler)调度器是 APScheduler 的核心,所有相关的组件都要通过它来定义,已配置好的任务也是要通过它来调度。


APScheduler 在 flask 中使用
因为 scheduler 任务需要耗费较多时间,因此当在项目中收到 flask 的接口请求后,可以通过线程异步处理耗时任务,先将 “正在处理” 作为接口结果返回,
示例代码结构如下:

编写任务函数,开始 APScheduler 的调度

在通过 flask 接口拿到需要的任务参数后,便可以创建调度任务。在创建调度任务之前,我们需要确定要选择哪一种调度器、job 存储、执行器和触发器,
调度器的选择主要基于编程环境以及 APScheduler 的用途,

这里我们根据需要选择 BackgroundScheduler。

在 job 存储的选择上,需要根据自己的 job 是否需要持久化,因为没有特殊的需求,所以使用默认的内存方式

执行器的选择需要依据 job 的类型,默认的线程池执行器apscheduler.executors.pool.ThreadPoolExecutor 已经可以满足大多数情况。

管理 job 的调度方式需要选择一个合适的触发器,APScheduler 内置三种触发器;

因为我们的自动化需要对各个子环节进行验证,当上一个环节成功后才能进行下一个环节的验证,因此选择 apscheduler.triggers.interval,以固定的时间间隔运行 job。

部分项目代码

 periodic_task 是项目中的任务调度函数;首先实例化了一个 BackgroundScheduler 调度器,接着向调度器添加 job,添加的 job 为 data_task 函数,同时定义了 job 的触发器,指定固定的时间间隔为 58 秒。

其中 data_task 描述了具体的 job 细节,即分别判断当前不同的任务节点执行相应的验证过程,并将每一步的验证状态记录到数据库中,这样在下一次执行 data_task 时,就可以去校验新的环节;

启动调度器使用 start 函数,结束调度器使用 shutdown 函数;

shutdown 函数可以指定停止条件,在本项目中,因为步骤比较多,一旦有环节出错,就需要结束任务,保存已验证的环节,因此在拿到任务结果时,不论是整个验证成功的结果,还是某个环节出错的结果,都会停止本次调度,结束掉本次验证。


总结
APScheduler 在 flask 中使用需要用到线程池异步去处理耗时任务;
使用 APScheduler 需要配置好合适的调度器、job 存储、执行器和触发器;
在业务中验证复杂连续的步骤可以使用轮询的方式,并设置好任务结束的条件,不仅可以校验每一步的验证结果而且有环节出错也不影响整个流程。
最后感谢每一个认真阅读我文章的人,礼尚往来总是要有的,虽然不是什么很值钱的东西,如果你用得到的话可以直接拿走:

文档获取方式:点击右边链接领取:软件测试全套资料分享         

这篇关于Python自动化测试中APScheduler Flask的应用示例的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/624165

相关文章

MySQL 日期时间格式化函数 DATE_FORMAT() 的使用示例详解

《MySQL日期时间格式化函数DATE_FORMAT()的使用示例详解》`DATE_FORMAT()`是MySQL中用于格式化日期时间的函数,本文详细介绍了其语法、格式化字符串的含义以及常见日期... 目录一、DATE_FORMAT()语法二、格式化字符串详解三、常见日期时间格式组合四、业务场景五、总结一、

浅析Python中的绝对导入与相对导入

《浅析Python中的绝对导入与相对导入》这篇文章主要为大家详细介绍了Python中的绝对导入与相对导入的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1 Imports快速介绍2 import语句的语法2.1 基本使用2.2 导入声明的样式3 绝对import和相对i

mysql线上查询之前要性能调优的技巧及示例

《mysql线上查询之前要性能调优的技巧及示例》文章介绍了查询优化的几种方法,包括使用索引、避免不必要的列和行、有效的JOIN策略、子查询和派生表的优化、查询提示和优化器提示等,这些方法可以帮助提高数... 目录避免不必要的列和行使用有效的JOIN策略使用子查询和派生表时要小心使用查询提示和优化器提示其他常

Qt实现发送HTTP请求的示例详解

《Qt实现发送HTTP请求的示例详解》这篇文章主要为大家详细介绍了如何通过Qt实现发送HTTP请求,文中的示例代码讲解详细,具有一定的借鉴价值,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1、添加network模块2、包含改头文件3、创建网络访问管理器4、创建接口5、创建网络请求对象6、创建一个回复对

Python中配置文件的全面解析与使用

《Python中配置文件的全面解析与使用》在Python开发中,配置文件扮演着举足轻重的角色,它们允许开发者在不修改代码的情况下调整应用程序的行为,下面我们就来看看常见Python配置文件格式的使用吧... 目录一、INI配置文件二、YAML配置文件三、jsON配置文件四、TOML配置文件五、XML配置文件

Spring Boot整合消息队列RabbitMQ的实现示例

《SpringBoot整合消息队列RabbitMQ的实现示例》本文主要介绍了SpringBoot整合消息队列RabbitMQ的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的... 目录RabbitMQ 简介与安装1. RabbitMQ 简介2. RabbitMQ 安装Spring

Python中conda虚拟环境创建及使用小结

《Python中conda虚拟环境创建及使用小结》本文主要介绍了Python中conda虚拟环境创建及使用小结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们... 目录0.前言1.Miniconda安装2.conda本地基本操作3.创建conda虚拟环境4.激活c

golang panic 函数用法示例详解

《golangpanic函数用法示例详解》在Go语言中,panic用于触发不可恢复的错误,终止函数执行并逐层向上触发defer,最终若未被recover捕获,程序会崩溃,recover用于在def... 目录1. panic 的作用2. 基本用法3. recover 的使用规则4. 错误处理建议5. 常见错

使用Python创建一个能够筛选文件的PDF合并工具

《使用Python创建一个能够筛选文件的PDF合并工具》这篇文章主要为大家详细介绍了如何使用Python创建一个能够筛选文件的PDF合并工具,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录背景主要功能全部代码代码解析1. 初始化 wx.Frame 窗口2. 创建工具栏3. 创建布局和界面控件4

一文详解如何在Python中使用Requests库

《一文详解如何在Python中使用Requests库》:本文主要介绍如何在Python中使用Requests库的相关资料,Requests库是Python中常用的第三方库,用于简化HTTP请求的发... 目录前言1. 安装Requests库2. 发起GET请求3. 发送带有查询参数的GET请求4. 发起PO