【PyTorch】PyTorch之Tensors属性篇

2024-01-19 11:12
文章标签 属性 pytorch tensors

本文主要是介绍【PyTorch】PyTorch之Tensors属性篇,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 前言
  • 一、Tensors
    • 1、is_tensor
    • 2、is_storage
    • 3、is_complex
    • 4、is_conj
    • 5、is_floating_point
    • 6、is_nonzero
    • 7、set_default_dtype
    • 8、get_default_dtype
    • 9、set_default_device
    • 10、set_default_tensor_type
    • 11、torch.numel
    • 12、set_printoptions
    • 13、set_flush_denormal


前言

Torch包含用于多维tensors的数据结构,并定义了对这些tensor进行数学运算的操作。此外,还提供了许多工具用于张量的高效序列化和任意类型转换,以及其他实用的工具。
另外,它还有一个CUDA(Computer Unified Device Architecture)组件,使得能够再具有计算能力>=3.0的NVIDIA GPU上运行Tesnor计算。

一、Tensors

1、is_tensor

torch.is_tensor(obj)
Parameters:
obj (Object) – Object to test

如果obj是一个Pytorch Tensor,则返回True。该方法只是简单的做isinstance(obj, Tensor),推荐使用isinstance(obj, Tensor)都代替is_tensor。

x = torch.tensor([1, 2, 3])
print(torch.is_tensor(x)

2、is_storage

torch.is_storage(obj)
Parameters:
obj (Object) – Object to test

如果obj是一个Pytorch的储存对象,则返回True。

3、is_complex

torch.is_complex(input)
Parameters:
input (Tensor) – the input tensor.

如果input的数据类型是复数数据类型,则返回True。即,torch.complex64和torch.complex128。

4、is_conj

torch.is_conj(input)
Parameters:
input (Tensor) – the input tensor.

如果输入是一个共轭张量,即其共轭位被设置为True,则返回True。

5、is_floating_point

torch.is_floating_point(input)
Parameters:
input (Tensor) – the input tensor.

如果输入的数据类型是浮点数数据类型,即 torch.float64、torch.float32、torch.float16 和 torch.bfloat16 中的一种,则返回 True。

6、is_nonzero

torch.is_nonzero(input)
Parameters
input (Tensor) – the input tensor.

如果输入是一个经过类型转换后不等于零的单元素张量,即不等于 torch.tensor([0.])、torch.tensor([0]) 或 torch.tensor([False]),则返回 True。如果 torch.numel() != 1(即使在稀疏张量的情况下也是如此),则抛出 RuntimeError。

7、set_default_dtype

torch.set_default_dtype(d)
Parameters:
d (torch.dtype) – the floating point dtype to make the default. Either torch.float32 or torch.float64.

将数据设置成默认的浮点类型。支持 torch.float32 和 torch.float64。其他数据类型可能会被接受但不会有任何提示,不受支持且可能无法按预期工作。
在 PyTorch 初始化时,其默认浮点数数据类型是 torch.float32,set_default_dtype(torch.float64) 的目的是为了实现类似 NumPy 的类型推断。默认浮点数数据类型用于:

1、隐式确定默认复数数据类型。当默认浮点数类型为 float32 时,默认复数数据类型为 complex64,当默认浮点数类型为 float64 时,默认复数数据类型为 complex128。
2、推断使用 Python 浮点数或复数 Python 数字构建的张量的数据类型。
3、确定在布尔张量和整数张量以及Python浮点数和复数Python数字之间的类型提升的结果。

8、get_default_dtype

获取当前默认的浮点torch.dtype。

torch.get_default_dtype()  # initial default for floating point is torch.float32
torch.set_default_dtype(torch.float64)
torch.get_default_dtype()  # default is now changed to torch.float64
torch.set_default_tensor_type(torch.FloatTensor)  # setting tensor type also affects this
torch.get_default_dtype()  # changed to torch.float32, the dtype for torch.FloatTensor

9、set_default_device

torch.set_default_device(device)
Parameters:
device (device or string) – the device to set as default

将默认的 torch.Tensor 分配到设备上。这不会影响使用显式设备参数调用的工厂函数调用。工厂调用将被执行,就好像它们被传递了设备作为参数一样。

为了只在局部改变默认设备而不是全局设置它,可以使用 with torch.device(device):。

默认设备最初是 cpu。如果将默认张量设备设置为另一个设备(例如,cuda)而没有设备索引,张量将被分配到该设备类型的当前设备上,即使调用了 torch.cuda.set_device() 之后也是如此。
此函数会对每个 Python 调用 torch API(不仅仅是工厂函数)造成轻微的性能开销。如果这对您造成了问题,请在 https://github.com/pytorch/pytorch/issues/92701 上进行评论。

torch.tensor([1.2, 3]).device
torch.set_default_device('cuda')  # current device is 0
torch.tensor([1.2, 3]).device
torch.set_default_device('cuda:1')
torch.tensor([1.2, 3]).device

10、set_default_tensor_type

torch.set_default_tensor_type(t)
Parameters
t (type or string) – the floating point tensor type or its name

将默认的 torch.Tensor 类型设置为浮点数张量类型 t。该类型也将用作 torch.tensor() 中类型推断的默认浮点数类型。

默认的浮点数张量类型最初是 torch.FloatTensor。

torch.tensor([1.2, 3]).dtype    # initial default for floating point is torch.float32
torch.set_default_tensor_type(torch.DoubleTensor)
torch.tensor([1.2, 3]).dtype    # a new floating point tensor

11、torch.numel

torch.numel(input) → int
Parameters
input (Tensor) – the input tensor.

返回输入张量中元素的总数。

a = torch.randn(1, 2, 3, 4, 5)
torch.numel(a)
a = torch.zeros(4,4)
torch.numel(a)

12、set_printoptions

torch.set_printoptions(precision=None, threshold=None, edgeitems=None, linewidth=None, profile=None, sci_mode=None)
Parameters
precision – Number of digits of precision for floating point output (default = 4).
threshold – Total number of array elements which trigger summarization rather than full repr (default = 1000).
edgeitems – Number of array items in summary at beginning and end of each dimension (default = 3).
linewidth – The number of characters per line for the purpose of inserting line breaks (default = 80). Thresholded matrices will ignore this parameter.
profile – Sane defaults for pretty printing. Can override with any of the above options. (any one of default, short, full)
sci_mode – Enable (True) or disable (False) scientific notation. If None (default) is specified, the value is defined by torch._tensor_str._Formatter. This value is automatically chosen by the framework.

打印内容参数设置。借鉴来自numpy。

# Limit the precision of elements
torch.set_printoptions(precision=2)
torch.tensor([1.12345])
# Limit the number of elements shown
torch.set_printoptions(threshold=5)
torch.arange(10)
# Restore defaults
torch.set_printoptions(profile='default')
torch.tensor([1.12345])
torch.arange(10)

13、set_flush_denormal

torch.set_flush_denormal(mode) → bool
Parameters
mode (bool) – Controls whether to enable flush denormal mode or not

禁用 CPU 上的非规格化浮点数。如果您的系统支持清除非规格化数并且成功配置了清除非规格化模式,则返回 True。set_flush_denormal() 仅在支持 SSE3 的 x86 架构上受支持。

torch.set_flush_denormal(True)
torch.tensor([1e-323], dtype=torch.float64)
torch.set_flush_denormal(False)
torch.tensor([1e-323], dtype=torch.float64)

这篇关于【PyTorch】PyTorch之Tensors属性篇的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/622238

相关文章

滚雪球学Java(87):Java事务处理:JDBC的ACID属性与实战技巧!真有两下子!

咦咦咦,各位小可爱,我是你们的好伙伴——bug菌,今天又来给大家普及Java SE啦,别躲起来啊,听我讲干货还不快点赞,赞多了我就有动力讲得更嗨啦!所以呀,养成先点赞后阅读的好习惯,别被干货淹没了哦~ 🏆本文收录于「滚雪球学Java」专栏,专业攻坚指数级提升,助你一臂之力,带你早日登顶🚀,欢迎大家关注&&收藏!持续更新中,up!up!up!! 环境说明:Windows 10

HTML5自定义属性对象Dataset

原文转自HTML5自定义属性对象Dataset简介 一、html5 自定义属性介绍 之前翻译的“你必须知道的28个HTML5特征、窍门和技术”一文中对于HTML5中自定义合法属性data-已经做过些介绍,就是在HTML5中我们可以使用data-前缀设置我们需要的自定义属性,来进行一些数据的存放,例如我们要在一个文字按钮上存放相对应的id: <a href="javascript:" d

Python中的属性装饰器:解锁更优雅的编程之道

引言 在Python的世界里,装饰器是一个强大的工具,它允许我们以一种非侵入性的方式修改函数或方法的行为。而当我们谈论“属性装饰器”时,则是在探讨如何使用装饰器来增强类中属性的功能。这不仅让我们的代码更加简洁、易读,同时也提供了强大的功能扩展能力。本文将带你深入了解属性装饰器的核心概念,并通过一系列实例展示其在不同场景下的应用,从基础到进阶,再到实际项目的实战经验分享,帮助你解锁Python编程

react笔记 8-17 属性绑定 class绑定 引入图片 循环遍历

1、绑定属性 constructor(){super()this.state={name:"张三",title:'我是一个title'}}render() {return (<div><div>aaaaaaa{this.state.name}<div title={this.state.title}>我是一个title</div></div></div>)} 绑定属性直接使用花括号{}   注

Nn criterions don’t compute the gradient w.r.t. targets error「pytorch」 (debug笔记)

Nn criterions don’t compute the gradient w.r.t. targets error「pytorch」 ##一、 缘由及解决方法 把这个pytorch-ddpg|github搬到jupyter notebook上运行时,出现错误Nn criterions don’t compute the gradient w.r.t. targets error。注:我用

ConstraintLayout布局里的一个属性app:layout_constraintDimensionRatio

ConstraintLayout 这是一个约束布局,可以尽可能的减少布局的嵌套。有一个属性特别好用,可以用来动态限制宽或者高app:layout_constraintDimensionRatio 关于app:layout_constraintDimensionRatio参数 app:layout_constraintDimensionRatio=“h,1:1” 表示高度height是动态变化

Python中的私有属性与方法:解锁面向对象编程的秘密

在Python的广阔世界里,面向对象编程(OOP)是一种强大而灵活的方法论,它帮助我们更好地组织代码、管理状态,并构建可复用的软件组件。而在这个框架内,私有属性与方法则是实现封装的关键机制之一。它们不仅有助于隐藏类内部的具体实现细节,还能保护数据免受外部干扰。今天,让我们一起探索Python中私有属性与方法的魅力所在,了解它们如何在实际开发中发挥重要作用。 引言 随着软件系统变得越来越复杂,维

转:android ro.debuggable属性调试修改(mprop逆向)

android ro属性调试修改(mprop逆向)      大家都知道如果需要调试android 的程序,以下两个条件满足一个就行。第一是apk的配置文件内的AndroidManifest.xml的 android:debuggable=”true”,第二就是/default.prop中ro.debuggable=1。两种方式第一种通常是解包添加属性再打包,随着加壳软件以及apk校验等,容易出

spring事务属性的xml格式配置

实际是使用代理做的事务优化 <!--配置事务的属性--><tx:advice id="txAdvice" transaction-manager="transactionManager"> <tx:attributes> <!--匹配所有以add开头的方法--><tx:method name="add*" propagation="REQUIRED" /> <tx:metho

【超级干货】2天速成PyTorch深度学习入门教程,缓解研究生焦虑

3、cnn基础 卷积神经网络 输入层 —输入图片矩阵 输入层一般是 RGB 图像或单通道的灰度图像,图片像素值在[0,255],可以用矩阵表示图片 卷积层 —特征提取 人通过特征进行图像识别,根据左图直的笔画判断X,右图曲的笔画判断圆 卷积操作 激活层 —加强特征 池化层 —压缩数据 全连接层 —进行分类 输出层 —输出分类概率 4、基于LeNet