基于R语言的NDVI的Sen-MK趋势检验

2024-01-19 10:04
文章标签 语言 趋势 检验 mk ndvi sen

本文主要是介绍基于R语言的NDVI的Sen-MK趋势检验,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本实验拟分析艾比湖地区2010年至2020年间的NDVI数据,数据从MODIS遥感影像中提取的NDVI值,在GEE遥感云平台上将影像数据下载下来。代码如下:

import ee
import geemap 
geemap.set_proxy(port=7890)# 设置全局网络代理
Map = geemap.Map()# 指定艾比湖地区数据范围
region = ee.Geometry.BBox(82.433,44.367,84.5,45.267)def get_mean_ndvi(year):y1,y2 = f'{year}-01-01', f'{year+1}-01-01'ndvi_collection = (ee.ImageCollection('MODIS/MCD43A4_006_NDVI') .filterDate(y1,y2) .filterBounds(region))ndvi = ndvi_collection.reduce(ee.Reducer.mean())geemap.ee_export_image_to_drive(ndvi, description=f'ndvi{year}', folder='image',scale=1000,region=region)for y in range(2010,2021):get_mean_ndvi(y)

影像会下载到Google云盘中,通过手动下载到本地,其根目录结构如下:
在这里插入图片描述

图1 根目录结构

下载该10年间的数据后,打开RStdio并导入将趋势检验中将使用的R包。代码如下:

library(sp)
library(raster)
library(rgdal)
library(trend)setwd('E:/CN/NDVI')
fl <- list.files(pattern = '*tif$')
firs <- raster(fl[1])for (i in 1:10) {r <- raster(fl[i])firs <- stack(firs, r)
}fun <- function(y){if(length(na.omit(y)) <10) return(c(NA, NA, NA))   #删除数据不连续含有NA的像元av <- mean(y,na.rm=T)MK_estimate <- sens.slope(ts(na.omit(y), start = 2010, end = 2020, frequency = 1), conf.level = 0.95) #Sen斜率估计slope <- MK_estimate$estimateMK_test <- MK_estimate$p.value
#    Zs <- MK_estimate$statisticreturn(c(av, slope, MK_test))
}e <- calc(firs, fun)   #栅格计算
#e_Zs <- subset(e,1)  #提取Z统计量
e_mean <- subset(e,1) #提取均值图层
e_slope <- subset(e,2)   #提取sen斜率
e_MKtest <- subset(e,3)   #提取p值plot(e_mean)
plot(e_slope)
plot(e_MKtest)writeRaster(e_mean, "E:/CN/NDVI/e_Zs.tif", format="GTiff", overwrite=T)
writeRaster(e_slope, "E:/CN/NDVI/e_slope.tif", format="GTiff", overwrite=T)
writeRaster(e_MKtest, "E:/CN/NDVI/e_MKtest.tif", format="GTiff", overwrite=T)

在这里插入图片描述

图2 2010-2020年间艾比湖地区NDVI均值图层

在这里插入图片描述

图3 R语言运行界面
在这里插入图片描述

图4 p值
在这里插入图片描述

图5 sen斜率
在这里插入图片描述

图6 Z统计量

R语言计算完slope和Z值后,根据这两个结果就可以进行NDVI趋势制图了。

一、变化趋势划分
结合SNDVI和Z统计量划分NDVI变化趋势:
1、slope
-0.0005~0.0005稳定区域
大于或等于0.0005植被改善区域
小于-0.0005为植被退化区域
2、Z统计量

二、Slope划分
置信水平0.05
Z绝对值大于1.96显著
Z绝对值小于等于1.96不显著
Slope被划分为三级:
SNDVI≤−0.0005 植被退化
−0.0005≥SNDVI≥0.0005 植被生长稳定
SNDVI≥0.0005 植被改善
使用重分类(Reclassify)对slope进行划分
由于slope.tif文件研究区范围外的值非空,所以在这里先裁剪了一下
裁剪所用矢量和栅格数据坐标系需要一致,否则范围容易出错
统一使用了WGS84地理坐标系作为空间参考
使用Model builder构建地理处理流
在这里插入图片描述

图7 重分类

三、Slope划分过程
重分类结果:
-1退化
0稳定
1改善
在这里插入图片描述

图8 重分类结果

四、Z值划分
对Z值进行重分类,确定显著性
|Zs|≤0.196 未通过95%置信度检验,不显著
|Zs|≥0.196 通过95%置信度检验,显著
在这里插入图片描述

图9 重分类
五、Z值重分类
重分类结果:
1不显著
2显著
在这里插入图片描述

图10 重分类结果

六、变化趋势计算
使用栅格计算器将Slope和Z值计算结果相乘,最后得到趋势变化划分
-2严重退化
-1轻微退化
0稳定不变
1轻微改善
2明显改善
在这里插入图片描述

图11 栅格计算器相乘
在这里插入图片描述

图12 arcgis计算NDVI趋势图

这篇关于基于R语言的NDVI的Sen-MK趋势检验的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/622066

相关文章

C语言线程池的常见实现方式详解

《C语言线程池的常见实现方式详解》本文介绍了如何使用C语言实现一个基本的线程池,线程池的实现包括工作线程、任务队列、任务调度、线程池的初始化、任务添加、销毁等步骤,感兴趣的朋友跟随小编一起看看吧... 目录1. 线程池的基本结构2. 线程池的实现步骤3. 线程池的核心数据结构4. 线程池的详细实现4.1 初

科研绘图系列:R语言扩展物种堆积图(Extended Stacked Barplot)

介绍 R语言的扩展物种堆积图是一种数据可视化工具,它不仅展示了物种的堆积结果,还整合了不同样本分组之间的差异性分析结果。这种图形表示方法能够直观地比较不同物种在各个分组中的显著性差异,为研究者提供了一种有效的数据解读方式。 加载R包 knitr::opts_chunk$set(warning = F, message = F)library(tidyverse)library(phyl

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

C语言 | Leetcode C语言题解之第393题UTF-8编码验证

题目: 题解: static const int MASK1 = 1 << 7;static const int MASK2 = (1 << 7) + (1 << 6);bool isValid(int num) {return (num & MASK2) == MASK1;}int getBytes(int num) {if ((num & MASK1) == 0) {return

MiniGPT-3D, 首个高效的3D点云大语言模型,仅需一张RTX3090显卡,训练一天时间,已开源

项目主页:https://tangyuan96.github.io/minigpt_3d_project_page/ 代码:https://github.com/TangYuan96/MiniGPT-3D 论文:https://arxiv.org/pdf/2405.01413 MiniGPT-3D在多个任务上取得了SoTA,被ACM MM2024接收,只拥有47.8M的可训练参数,在一张RTX

如何确定 Go 语言中 HTTP 连接池的最佳参数?

确定 Go 语言中 HTTP 连接池的最佳参数可以通过以下几种方式: 一、分析应用场景和需求 并发请求量: 确定应用程序在特定时间段内可能同时发起的 HTTP 请求数量。如果并发请求量很高,需要设置较大的连接池参数以满足需求。例如,对于一个高并发的 Web 服务,可能同时有数百个请求在处理,此时需要较大的连接池大小。可以通过压力测试工具模拟高并发场景,观察系统在不同并发请求下的性能表现,从而

C语言:柔性数组

数组定义 柔性数组 err int arr[0] = {0}; // ERROR 柔性数组 // 常见struct Test{int len;char arr[1024];} // 柔性数组struct Test{int len;char arr[0];}struct Test *t;t = malloc(sizeof(Test) + 11);strcpy(t->arr,

C语言指针入门 《C语言非常道》

C语言指针入门 《C语言非常道》 作为一个程序员,我接触 C 语言有十年了。有的朋友让我推荐 C 语言的参考书,我不敢乱推荐,尤其是国内作者写的书,往往七拼八凑,漏洞百出。 但是,李忠老师的《C语言非常道》值得一读。对了,李老师有个官网,网址是: 李忠老师官网 最棒的是,有配套的教学视频,可以试看。 试看点这里 接下来言归正传,讲解指针。以下内容很多都参考了李忠老师的《C语言非

C 语言基础之数组

文章目录 什么是数组数组变量的声明多维数组 什么是数组 数组,顾名思义,就是一组数。 假如班上有 30 个同学,让你编程统计每个人的分数,求最高分、最低分、平均分等。如果不知道数组,你只能这样写代码: int ZhangSan_score = 95;int LiSi_score = 90;......int LiuDong_score = 100;int Zhou

C 语言的基本数据类型

C 语言的基本数据类型 注:本文面向 C 语言初学者,如果你是熟手,那就不用看了。 有人问我,char、short、int、long、float、double 等这些关键字到底是什么意思,如果说他们是数据类型的话,那么为啥有这么多数据类型呢? 如果写了一句: int a; 那么执行的时候在内存中会有什么变化呢? 橡皮泥大家都玩过吧,一般你买橡皮泥的时候,店家会赠送一些模板。 上