类EMD的“信号分解方法”及MATLAB实现(第五篇)——ICEEMDAN

2024-01-19 03:59

本文主要是介绍类EMD的“信号分解方法”及MATLAB实现(第五篇)——ICEEMDAN,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

继续完善“类EMD”方法系列,本篇是继EEMD、CEEMD、CEEMDAN、VMD后的第5篇,想要看前几种方法的点击链接可以跳转。

ICEEMDAN(Improved complete ensemble EMD)是2014年被提出的[1],它是对CEEMDAN方法的改进算法。方法名字随着方法更新越来越长,颇有手机命名的风范。

1. ICEEMDAN(改进的自适应噪声完备集合经验模态分解)的概念

据算法提出者Colominas的说法,ICEEMDAN的主要目的是解决CEEMDAN中残留噪声和伪模态的问题。

虽然只多了一个字母“I”,但是两个方法的思路却颇不相同。

有时候看起来复杂的算式是为了简洁,这里我们按照原文[1]中的思路引入两个算子:

(1)算子 E_{j}(\cdot ) ,代表求一个信号EMD分解的第j个IMF分量。

(2)算子 M(\cdot ) ,代表求信号的局部均值。这里的局部均值是什么含义呢,在讲EMD分解的时候我们提到过,我们在EMD分解的过程中是不断地(1)求信号的上下包络线均值→(2)原始信号减掉均值包络线→(3)反复迭代直至信号满足两个约束条件,此时就得到了一个IMF分量,而局部均值指的就是“原始信号减去此IMF得到的部分”。

 

搞明白这两个算子之后,那就把原文章里的流程图贴上来了:

针对上图再补充两点说明:

(1)上图中的 w^{(i)}[n] 指的是加入的第i组高斯白噪声,所以在每轮求IMF过程中,所加入的噪声信号都是原始噪声信号的IMF分量。

(2)上图中的 \varepsilon _{j} 指的是加入噪声分量时所乘的系数,该系数代表的是加速噪声的信噪比与该噪声分量标准差之比。换句话说,  代表的是第i组高斯白噪声的第k个分量,乘以添加噪声相对于原信号的信噪比,再除以这组高斯白噪声的标准差。其中添加噪声相对于原信号的信噪比将是ICEEMDAN程序的入口参数之一,另外还有一个入口参数就是总共添加的白噪声组数。

相对于CEEMDAN方法以及之间介绍的几种算法,ICEEMDAN的主要优势在于更少的伪模态。论文中举了一个例子作为对比:

从左到右分别是EMD、EEMD、CEEMD、CEEMDAN、ICEEMDAN,可以看出ICEEMDAN方法确实减少了很多不必要的分量。

2. ICEEMDAN的编程实现

下面我们自己编程实现并验证一下。

该方法的原始代码网上可以找到[2],不过鉴于专栏前期将“类EMD”方法的代码做了统一格式的封装,提升了调用格式的延续性和代码易用性,实现便捷画图,所以这次也对ICEEMDAN的代码做了类似处理。封装后的函数有两个。

测试信号同样使用前两篇文章中的正弦信号与间断性高频脉冲合成的信号: 

%% 1.生成仿真信号
fs = 400;  %采样频率
t = 0:1/fs:0.75; %时间轴
x = sin(2*pi*4*t); %低频正弦信号
y = 0.5*sin(2*pi*120*t); %高频正弦信号
for i = 1:length(t) %将高频信号处理成间断性if mod(t(i),0.25)>0.11&&mod(t(i),0.25)<0.12elsey(i) = 0;end
end
sig = x+y; %信号叠加
figure('color','white')
plot(t,sig,'k') %绘制原始信号

待分析的信号

(一)时域分解图

画ICEEMDAN分解图的函数介绍如下:

function imf = pICEEMDAN(data,FsOrT,Nstd,NE,MaxIter)
% 画信号ICEEMDAN分解图
% 输入:
% data为待分解信号
% FsOrT为采样频率或采样时间向量,如果为采样频率,该变量输入单个值;如果为时间向量,该变量为与y相同长度的一维向量。如果未知采样频率,可设置为1
% Nstd为附加噪声标准差与Y标准差之比
% NE为对信号的平均次数
% MaxIter:最大迭代次数
% 输出:
% imf为经ICEEMDAN分解后的各imf分量值
% 例1:(FsOrT为采样频率)
% fs = 100;
% t = 1/fs:1/fs:1;
% data = sin(2*pi*5*t)+2*sin(2*pi*20*t);
% imf = pICEEMDAN(data,fs,0.2,100);
% 例2:(FsOrT为时间向量,需要注意此时FsOrT的长度要与y相同)
% t = 0:0.01:1;
% data = sin(2*pi*5*t)+2*sin(2*pi*20*t);
% imf = pICEEMDAN(data,t,0.2,100);

应用上边的函数,画出的图是这样的:

ICEEMDAN分解结果

对比一下,下图是之前介绍CEEMDAN文章中使用同样的测试信号得到的分解图:

CEEMDAN分解结果

可见使用ICEEMDAN方法确实很大程度上减少了伪模态。

(二)时域分解图及对应频谱图

画ICEEMDAN分解图及对应频谱图的函数介绍如下:

function imf = pICEEMDANandFFT(y,FsOrT,Nstd,NE,MaxIter)
% 画信号ICEEMDAN分解与各IMF分量频谱对照图
% 输入:
% y为待分解信号
% FsOrT为采样频率或采样时间向量,如果为采样频率,该变量输入单个值;如果为时间向量,该变量为与y相同长度的一维向量
% Nstd为附加噪声标准差与Y标准差之比
% NE为对信号的平均次数
% MaxIter:最大迭代次数
% 输出:
% imf为经ICEEMDAN分解后的各imf分量值
% 例1:(FsOrT为采样频率)
% fs = 100;
% t = 1/fs:1/fs:1;
% y = sin(2*pi*5*t)+2*sin(2*pi*20*t);
% imf = pICEEMDANandFFT(y,fs,0.2,100);
% 例2:(FsOrT为时间向量,需要注意此时FsOrT的长度要与y相同)
% t = 0:0.01:1;
% y = sin(2*pi*5*t)+2*sin(2*pi*20*t);
% imf = pICEEMDANandFFT(y,t,0.2,100);

画出的图是这样的:

上边的测试代码和封装函数,包括工具箱都可以在下述连接获取:

ICEEMDAN画图工具(公开版) | 工具箱文档

EMD、EEMD、CEEMD、CEEMDAN、VMD以及HHT相关的程序也有,编程不易,感谢支持~关于EMD、EEMD、CEEMD、VMD和HHT的相关介绍可以看这里:

Mr.看海:这篇文章能让你明白经验模态分解(EMD)——EMD在MATLAB中的实现方法

Mr.看海:希尔伯特谱、边际谱、包络谱、瞬时频率/幅值/相位——Hilbert分析衍生方法及MATLAB实现

Mr.看海:类EMD的“信号分解方法”及MATLAB实现(第一篇)——EEMD

Mr.看海:类EMD的“信号分解方法”及MATLAB实现(第二篇)——CEEMD

Mr.看海:类EMD的“信号分解方法”及MATLAB实现(第三篇)——CEEMDAN

Mr.看海:类EMD的“信号分解方法”及MATLAB实现(第四篇)——VMD

参考

  1. ^abColominas M A , Schlotthauer G , Torres M E . Improved complete ensemble EMD: A suitable tool for biomedical signal processing[J]. Biomedical Signal Processing & Control, 2014, 14(nov.):19-29.
  2. ^http://bioingenieria.edu.ar/grupos/ldnlys/metorres/re_inter.htm

这篇关于类EMD的“信号分解方法”及MATLAB实现(第五篇)——ICEEMDAN的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/621195

相关文章

python使用watchdog实现文件资源监控

《python使用watchdog实现文件资源监控》watchdog支持跨平台文件资源监控,可以检测指定文件夹下文件及文件夹变动,下面我们来看看Python如何使用watchdog实现文件资源监控吧... python文件监控库watchdogs简介随着Python在各种应用领域中的广泛使用,其生态环境也

el-select下拉选择缓存的实现

《el-select下拉选择缓存的实现》本文主要介绍了在使用el-select实现下拉选择缓存时遇到的问题及解决方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录项目场景:问题描述解决方案:项目场景:从左侧列表中选取字段填入右侧下拉多选框,用户可以对右侧

Java调用Python代码的几种方法小结

《Java调用Python代码的几种方法小结》Python语言有丰富的系统管理、数据处理、统计类软件包,因此从java应用中调用Python代码的需求很常见、实用,本文介绍几种方法从java调用Pyt... 目录引言Java core使用ProcessBuilder使用Java脚本引擎总结引言python

Apache Tomcat服务器版本号隐藏的几种方法

《ApacheTomcat服务器版本号隐藏的几种方法》本文主要介绍了ApacheTomcat服务器版本号隐藏的几种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需... 目录1. 隐藏HTTP响应头中的Server信息编辑 server.XML 文件2. 修China编程改错误

Java中switch-case结构的使用方法举例详解

《Java中switch-case结构的使用方法举例详解》:本文主要介绍Java中switch-case结构使用的相关资料,switch-case结构是Java中处理多个分支条件的一种有效方式,它... 目录前言一、switch-case结构的基本语法二、使用示例三、注意事项四、总结前言对于Java初学者

Python pyinstaller实现图形化打包工具

《Pythonpyinstaller实现图形化打包工具》:本文主要介绍一个使用PythonPYQT5制作的关于pyinstaller打包工具,代替传统的cmd黑窗口模式打包页面,实现更快捷方便的... 目录1.简介2.运行效果3.相关源码1.简介一个使用python PYQT5制作的关于pyinstall

使用Python实现大文件切片上传及断点续传的方法

《使用Python实现大文件切片上传及断点续传的方法》本文介绍了使用Python实现大文件切片上传及断点续传的方法,包括功能模块划分(获取上传文件接口状态、临时文件夹状态信息、切片上传、切片合并)、整... 目录概要整体架构流程技术细节获取上传文件状态接口获取临时文件夹状态信息接口切片上传功能文件合并功能小

python实现自动登录12306自动抢票功能

《python实现自动登录12306自动抢票功能》随着互联网技术的发展,越来越多的人选择通过网络平台购票,特别是在中国,12306作为官方火车票预订平台,承担了巨大的访问量,对于热门线路或者节假日出行... 目录一、遇到的问题?二、改进三、进阶–展望总结一、遇到的问题?1.url-正确的表头:就是首先ur

C#实现文件读写到SQLite数据库

《C#实现文件读写到SQLite数据库》这篇文章主要为大家详细介绍了使用C#将文件读写到SQLite数据库的几种方法,文中的示例代码讲解详细,感兴趣的小伙伴可以参考一下... 目录1. 使用 BLOB 存储文件2. 存储文件路径3. 分块存储文件《文件读写到SQLite数据库China编程的方法》博客中,介绍了文

Oracle Expdp按条件导出指定表数据的方法实例

《OracleExpdp按条件导出指定表数据的方法实例》:本文主要介绍Oracle的expdp数据泵方式导出特定机构和时间范围的数据,并通过parfile文件进行条件限制和配置,文中通过代码介绍... 目录1.场景描述 2.方案分析3.实验验证 3.1 parfile文件3.2 expdp命令导出4.总结