C++内存管理变革(4):boost::object_pool与gc allocator

2024-01-18 04:32

本文主要是介绍C++内存管理变革(4):boost::object_pool与gc allocator,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

C++内存管理变革(4): boost::object_pool

许式伟 (版权声明)
2007-4-21

这篇文章拖的有点久了。NeutralEvil 在3个月之前就在催促我继续写了。只是出于WinxGui完整性的考虑,我一直在刻意优先去补充其它方面的文章,而不是让人去误会WinxGui是一个内存管理库了。:)

言归正传。我们在内存池(MemPool)技术详解已经介绍了boost::pool组件。从内存管理观念的变革来看,这是是一个传统的MemPool组件,尽管也有一定的改进(但只是性能上的改进)。但boost::object_pool不同,它与我在C++内存管理变革强调的观念非常吻合。可以认为,boost::object_pool是一种不通用的gc allocator组件。

我已经多次提出gc allocator的概念。这里仍然需要强调一下,所谓gc allocator,是指具垃圾回收能力的allocatorC++内存管理变革(1) 中我们引入了这个概念,但是没有明确gc allocator一词。

boost::object_pool内存管理观念

boost::object_pool的了不起之处在于,这是C++从库的层次上头一次承认,程序员在内存管理上是会犯错误的,由程序员来确保内存不泄漏是困难的。boost::object_pool允许你忘记释放内存。我们来看一个例子:

    class X { … };
 
    
void func()
    {
        boost::object_pool
<X> alloc;
 

        X* obj1 = alloc.construct();
        X
* obj2 = alloc.construct();
        alloc.destroy(obj2);
    }

如果boost::object_pool只是一个普通的allocator,那么这段代码显然存在问题,因为obj1的析构函数没有执行,申请的内存也没有释放。

但是这段代码是完全正常的。是的,obj1的析构确实执行了,所申请内存也被释放了。这就是说,boost::object_pool既支持你手工释放内存(通过主动调用object_pool::destroy),也支持内存的自动回收(通过object_pool::~object_pool析构的执行)。这正符合gc allocator的规格。

注:内存管理更好的说法是对象管理。内存的申请和释放更确切的说是对象的创建和销毁。但是这里我们不刻意区分这两者的差异。

boost::object_pool与AutoFreeAlloc

我们知道,AutoFreeAlloc不支持手工释放,而只能等到AutoFreeAlloc对象析构的时候一次性全部释放内存。那么,是否可以认为boost::object_pool是否比AutoFreeAlloc更加完备呢?

其实不然。boost::object_pool与AutoFreeAlloc都不是完整意义上的gc allocator。AutoFreeAlloc因为它只能一次性释放,故此仅仅适用特定的用况。然而尽管AutoFreeAlloc不是普适的,但它是通用型的gc allocator。而boost::object_pool只能管理一种对象,并不是通用型的allocator,局限性其实更强。

boost::object_pool的实现细节

大家对boost::object_pool应该已经有了一个总体的把握。现在,让我们深入到object_pool的实现细节中去。

内存池(MemPool)技术详解中,我们介绍boost::pool组件时,特意提醒大家留意pool::ordered_malloc/ordered_free函数。事实上,boost::object_poolmalloc/construct, free/destroy函数调用了pool::ordered_malloc, ordered_free函数,而不是pool::malloc, free函数。

让我们解释下为什么。

其实这其中的关键,在于object_pool要支持手工释放内存和自动回收内存(并自动执行析构函数)两种模式。如果没有自动析构,那么普通的MemPool就足够了,也就不需要ordered_free。既然有自动回收,同时又存在手工释放,那么就需要区分内存块(MemBlock)中哪些结点(Node)是自由内存结点(FreeNode),哪些结点是已经使用的。对于哪些已经是自由内存的结点,显然不能再调用对象的析构函数。

我们来看看object_pool::~object_pool函数的实现:

template <typename T, typename UserAllocator>
object_pool
<T, UserAllocator>::~object_pool()
{
  
// handle trivial case
  if (!this->list.valid())
    
return;
 
  details::PODptr
<size_type> iter = this->list;
  details::PODptr
<size_type> next = iter;
 
  
// Start ’freed_iter’ at beginning of free list
  void * freed_iter = this->first;
 
  
const size_type partition_size = this->alloc_size();
 
  
do
  {
    
// increment next
    next = next.next();
  
    
// delete all contained objects that aren’t freed
  
    
// Iterate ’i' through all chunks in the memory block
    for (char * i = iter.begin(); i != iter.end(); i += partition_size)
    {
      
// If this chunk is free
      if (i == freed_iter)
      {
        
// Increment freed_iter to point to next in free list
        freed_iter = nextof(freed_iter);
 
        
// Continue searching chunks in the memory block
        continue;
      }
  
      
// This chunk is not free (allocated), so call its destructor
      static_cast<*>(static_cast<void *>(i))->~T();
      
// and continue searching chunks in the memory block
    }
  
    
// free storage
    UserAllocator::free(iter.begin());
  
    
// increment iter
    iter = next;
  } 
while (iter.valid());
  
  
// Make the block list empty so that the inherited destructor doesn’t try to
  
//  free it again.
  this->list.invalidate();
}

这段代码不难理解,object_pool遍历所有申请的内存块(MemBlock),并遍历其中所有结点(Node),如果该结点不出现在自由内存结点(FreeNode)的列表(FreeNodeList)中,那么,它就是用户未主动释放的结点,需要进行相应的析构操作。

现在你明白了,ordered_malloc是为了让MemBlockList中的MemBlock有序,ordered_free是为了让FreeNodeList中的所有FreeNode有序。而MemBlockList, FreeNodeList有序,是为了更快地检测Node是自由的还是被使用的(这实际上是一个集合求交的流程,建议你看看std::set_intersection,它定义在STL的 中)。

C++内存管理变革-系列文章 

  • C++内存管理变革
  • C++内存管理变革(2):最袖珍的垃圾回收器
  • C++内存管理变革(3):另类内存管理
  • 再论C++之垃圾回收(GC)

点击这里查看更多内存管理相关文章。




这篇关于C++内存管理变革(4):boost::object_pool与gc allocator的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/618073

相关文章

Spring Boot集成Druid实现数据源管理与监控的详细步骤

《SpringBoot集成Druid实现数据源管理与监控的详细步骤》本文介绍如何在SpringBoot项目中集成Druid数据库连接池,包括环境搭建、Maven依赖配置、SpringBoot配置文件... 目录1. 引言1.1 环境准备1.2 Druid介绍2. 配置Druid连接池3. 查看Druid监控

c++ 类成员变量默认初始值的实现

《c++类成员变量默认初始值的实现》本文主要介绍了c++类成员变量默认初始值,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录C++类成员变量初始化c++类的变量的初始化在C++中,如果使用类成员变量时未给定其初始值,那么它将被

C++中NULL与nullptr的区别小结

《C++中NULL与nullptr的区别小结》本文介绍了C++编程中NULL与nullptr的区别,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编... 目录C++98空值——NULLC++11空值——nullptr区别对比示例 C++98空值——NUL

C++ Log4cpp跨平台日志库的使用小结

《C++Log4cpp跨平台日志库的使用小结》Log4cpp是c++类库,本文详细介绍了C++日志库log4cpp的使用方法,及设置日志输出格式和优先级,具有一定的参考价值,感兴趣的可以了解一下... 目录一、介绍1. log4cpp的日志方式2.设置日志输出的格式3. 设置日志的输出优先级二、Window

Knife4j+Axios+Redis前后端分离架构下的 API 管理与会话方案(最新推荐)

《Knife4j+Axios+Redis前后端分离架构下的API管理与会话方案(最新推荐)》本文主要介绍了Swagger与Knife4j的配置要点、前后端对接方法以及分布式Session实现原理,... 目录一、Swagger 与 Knife4j 的深度理解及配置要点Knife4j 配置关键要点1.Spri

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

解读GC日志中的各项指标用法

《解读GC日志中的各项指标用法》:本文主要介绍GC日志中的各项指标用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、基础 GC 日志格式(以 G1 为例)1. Minor GC 日志2. Full GC 日志二、关键指标解析1. GC 类型与触发原因2. 堆

Java内存分配与JVM参数详解(推荐)

《Java内存分配与JVM参数详解(推荐)》本文详解JVM内存结构与参数调整,涵盖堆分代、元空间、GC选择及优化策略,帮助开发者提升性能、避免内存泄漏,本文给大家介绍Java内存分配与JVM参数详解,... 目录引言JVM内存结构JVM参数概述堆内存分配年轻代与老年代调整堆内存大小调整年轻代与老年代比例元空

从入门到精通C++11 <chrono> 库特性

《从入门到精通C++11<chrono>库特性》chrono库是C++11中一个非常强大和实用的库,它为时间处理提供了丰富的功能和类型安全的接口,通过本文的介绍,我们了解了chrono库的基本概念... 目录一、引言1.1 为什么需要<chrono>库1.2<chrono>库的基本概念二、时间段(Durat

C++20管道运算符的实现示例

《C++20管道运算符的实现示例》本文简要介绍C++20管道运算符的使用与实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录标准库的管道运算符使用自己实现类似的管道运算符我们不打算介绍太多,因为它实际属于c++20最为重要的