【电子通识】开漏输出和推挽输出有什么差别?

2024-01-16 08:44

本文主要是介绍【电子通识】开漏输出和推挽输出有什么差别?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在看一些MCU芯片手册的时候,能发现GPIO的功能有开漏输出和推挽式输出。那么这两种输出到底有什么差别?

如下是STM32F10xxx参考手册中对于GPIO的功能描述:

 如下为GPIO内部框图:

在一些其他的芯片规格书中也同样看到不同的GPIO工作模式:

推挽输出

推挽输出的结构是由两个三极管或者MOS管受到互补信号的控制,两个管子始终保持一个处于截止,另一个处于导通的状态。电路工作时,两只对称的开关管每次只有一个导通,所以导通损耗小、效率高、既提高电路的负载能力,又提高开关速度。

推挽输出的最大特点是可以真正的输出高电平和低电平,在两种电平下都具有驱动能力(就是指输出电流的能力)。

对于驱动大负载时,例如IO输出为5V,驱动的负载为10ohm,根据欧姆定律可以得到负载上的电流为0.5A(推算出功率为2.5W)。显然一般MCU的IO不可能有这么大的驱动能力(大概在mA级别),也就是没有办法输出这么大的电流。于是造成的结果就是输出电压会被拉下来,达不到标称的5V。

当然如果只是数字信号的传递,下一级的输入阻抗理论上最好是高阻,也就是只需要传电压,基本没有电流,也就没有功率,于是就不需要很大的驱动能力。

对于推挽输出,输出高、低电平时电流的流向如下图所示。所以相比于开漏输出,输出高电平时的驱动能力强很多。

但推挽输出有也有缺点,如果当两个或多个推挽输出结构的GPIO相连在一起,一个输出高电平,即上面的MOS导通,下面的MOS闭合时;同时另一个输出低电平,即上面的MOS闭合,下面的MOS导通时。电流会从第一个引脚的VCC通过上端MOS再经过第二个引脚的下端MOS直接流向GND。

整个通路上电阻很小,相当于发生短路,进而可能造成端口的损害。这也是为什么推挽输出不能实现" 线与"的原因。
 

开漏输出

开漏输出和推挽输出的区别最普遍的说法就是开漏输出无法真正输出高电平(即高电平时没有驱动能力)需要借助外部上拉电阻完成对外驱动。

首先要了解开漏输出和开集输出。这两种输出的原理和特性基本是类似的,区别在于一个是使用MOS管,其中的"漏"指的就是MOS管的漏极;另一个使用三极管,其中的"集"指的就是MOS三极管的集电极。这两者其实都是和推挽输出相对应的输出模式,由于使用MOS管的情况较多,很多时候就用"开漏输出"这个词代替了开漏输出和开集输出。

左边的电路是开集(OC)输出最基本的电路,当输入为高电平时,NPN三极管导通,Output被拉到GND,输出为低电平;当输入为低电平时,NPN三极管闭合,Output相当于开路(输出高阻)。高电平时输出高阻(高阻、三态以及floating说的都是一个意思),此时对外没有任何的驱动能力。这个电路虽然完成了开集输出的功能,但是会出现input为高,输出为低;input为低,输出为高的情况。

右边的电路中多使用了一个三极管完成了"反相"。当输入为高电平时,第一个三极管导通,此时第二个三极管的输入端会被拉到GND,于是第二个三极管闭合,输出高阻;当输入为低电平时,第一个三极管闭合,此时第二个三极管的输入端会被上拉电阻拉到高电平,于是第二个三极管导通,输出被拉到GND。这样,这个电路的输入与输出是同相的了。

开漏输出的电路如图所示。原理与开集输出基本相同,只是将三极管换成了MOS而已,并且MOS管不会导致电平反相,所以只需要用一个就完成功能。

 开漏输出最主要的特性就是高电平没有驱动能力,需要借助外部上拉电阻才能真正输出高电平,其电路如图所示。

当MOS管闭合时,开漏输出电路输出高电平,且连接着负载时,电流流向是从外部电源,流经上拉电阻RPU,流进负载,最后进入GND。

开漏输出的这一特性一个明显的优势就是可以很方便的调节输出的电平,因为输出电平完全由上拉电阻连接的电源电平决定。所以在需要进行电平转换的地方,非常适合使用开漏输出。

开漏输出的这一特性另一个好处在于可以实现"线与"功能,所谓的"线与"指的是多个信号线直接连接在一起,只有当所有信号全部为高电平时,合在一起的总线为高电平;只要有任意一个或者多个信号为低电平,则总线为低电平。而推挽输出就不行,如果高电平和低电平连在一起,会出现短路电流倒灌,损坏器件。

比如一些充电芯片的STAT状态脚就会是这种开漏输出,这样不管接什么电平的IO脚都可以胜任:

总结

通过以上的分析,最终推挽输出与开漏输出的差别如下所示:

部分参考:​​​​​​GPIO推挽输出和开漏输出模式区别详解_gpio开漏输出和推挽输出输入的区别-CSDN博客

这篇关于【电子通识】开漏输出和推挽输出有什么差别?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/611970

相关文章

顺序表之创建,判满,插入,输出

文章目录 🍊自我介绍🍊创建一个空的顺序表,为结构体在堆区分配空间🍊插入数据🍊输出数据🍊判断顺序表是否满了,满了返回值1,否则返回0🍊main函数 你的点赞评论就是对博主最大的鼓励 当然喜欢的小伙伴可以:点赞+关注+评论+收藏(一键四连)哦~ 🍊自我介绍   Hello,大家好,我是小珑也要变强(也是小珑),我是易编程·终身成长社群的一名“创始团队·嘉宾”

AI(文生语音)-TTS 技术线路探索学习:从拼接式参数化方法到Tacotron端到端输出

AI(文生语音)-TTS 技术线路探索学习:从拼接式参数化方法到Tacotron端到端输出 在数字化时代,文本到语音(Text-to-Speech, TTS)技术已成为人机交互的关键桥梁,无论是为视障人士提供辅助阅读,还是为智能助手注入声音的灵魂,TTS 技术都扮演着至关重要的角色。从最初的拼接式方法到参数化技术,再到现今的深度学习解决方案,TTS 技术经历了一段长足的进步。这篇文章将带您穿越时

如何将一个文件里不包含某个字符的行输出到另一个文件?

第一种: grep -v 'string' filename > newfilenamegrep -v 'string' filename >> newfilename 第二种: sed -n '/string/!'p filename > newfilenamesed -n '/string/!'p filename >> newfilename

Detectorn2预训练模型复现:数据准备、训练命令、日志分析与输出目录

Detectorn2预训练模型复现:数据准备、训练命令、日志分析与输出目录 在深度学习项目中,目标检测是一项重要的任务。本文将详细介绍如何使用Detectron2进行目标检测模型的复现训练,涵盖训练数据准备、训练命令、训练日志分析、训练指标以及训练输出目录的各个文件及其作用。特别地,我们将演示在训练过程中出现中断后,如何使用 resume 功能继续训练,并将我们复现的模型与Model Zoo中的

Spring Boot集成PDFBox实现电子签章

概述 随着无纸化办公的普及,电子文档的使用越来越广泛。电子签章作为一种有效的身份验证方式,在很多场景下替代了传统的纸质文件签名。Apache PDFBox 是一个开源的Java库,可以用来渲染、生成、填写PDF文档等操作。本文将介绍如何使用Spring Boot框架结合PDFBox来实现电子签章功能。 准备工作 环境搭建:确保你的开发环境中安装了JDK 8或更高版本,并且配置好了Maven或

【电子通识】半导体工艺——保护晶圆表面的氧化工艺

在文章【电子通识】半导体工艺——晶圆制造中我们讲到晶圆的一些基础术语和晶圆制造主要步骤:制造锭(Ingot)、锭切割(Wafer Slicing)、晶圆表面抛光(Lapping&Polishing)。         那么其实当晶圆暴露在大气中或化学物质中的氧气时就会形成氧化膜。这与铁(Fe)暴露在大气时会氧化生锈是一样的道理。 氧化膜的作用         在半导体晶圆

第六章习题11.输出以下图形

🌏个人博客:尹蓝锐的博客 希望文章能够给到初学的你一些启发~ 如果觉得文章对你有帮助的话,点赞 + 关注+ 收藏支持一下笔者吧~ 1、题目要求: 输出以下图形

LibSVM学习(五)——分界线的输出

对于学习SVM人来说,要判断SVM效果,以图形的方式输出的分解线是最直观的。LibSVM自带了一个可视化的程序svm-toy,用来输出类之间的分界线。他是先把样本文件载入,然后进行训练,通过对每个像素点的坐标进行判断,看属于哪一类,就附上那类的颜色,从而使类与类之间形成分割线。我们这一节不讨论svm-toy怎么使用,因为这个是“傻瓜”式的,没什么好讨论的。这一节我们主要探讨怎么结合训练结果文件

下载/保存/读取 文件,并转成流输出

最近对文件的操作又熟悉了下;现在记载下来:学习在于 坚持!!!不以细小而不为。 实现的是:文件的下载、文件的保存到SD卡、文件的读取输出String 类型、最后是文件转换成流输出;一整套够用了; 重点: 1:   操作网络要记得开线程; 2:更新网络获取的数据 切记用Handler机制; 3:注意代码的可读性(这里面只是保存到SD卡,在项目中切记要对SD卡的有无做判断,然后再获取路径!)

file-max与ulimit的关系与差别

http://zhangxugg-163-com.iteye.com/blog/1108402 http://ilikedo.iteye.com/blog/1554822