如何通过ISPC使用Xe(核显)进行计算

2024-01-16 06:20
文章标签 进行 使用 计算 xe 核显 ispc

本文主要是介绍如何通过ISPC使用Xe(核显)进行计算,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

我一直以为 ISPC 的 Xe 是只包含独立显卡的,比如 A770 这些,没想到看了眼文档是可以使用核显的,但只能在 Linux 和 Windows 上,macOS 不行,就想试试看。

写本文是因为 ISPC 已经出现了三四个版本的大改,但是官方文档Intel® ISPC for Xe并未提及这些。不过这篇官方文档依旧可以带来很多帮助。

准备工作

本文使用 Windows 系统进行操作,Linux 操作类似。(实际使用建议使用 Linux,Windows 上毛病比较多)

此外需要注意不能使用 WSL。个人猜测是因为 WSL 无法识别核显型号,因为 lspci的结果中,显卡显示是3D controller,而不是正经 Linux 发行版中的,比如VGA compatible controller(厂商数据也不对)。CUDA 是通过一个库实现的,也就是中继的,但是 Intel 好像没有弄这样的库。

此外,ISPC 最新的 Windows 版本针对我的核显的代码不能用:编译没问题,但是运行不成功,显示版本问题。原因是我使用的 UHD 630 是 Gen 9 的,而目前 Windows 版本只支持 11-13 代或者 Arc 独显。

目前 Windows 版本只支持 11-13 代或者独显

所以如果你和我遇到一样的问题,那么请安装 v1.18.1 或者 v1.18.0 的 ISPC,这样就可以成功运行了。

成功准备好 ISPC 之后,安装 Level Zero Loader。方法很简单,下载level-zero-sdk,之后配置环境变量LEVEL_ZERO_PATH即可。

运行原理

ISPC Runtime 是 Level Zero 的高级化产物(类似汇编语言和高级语言的关系),可以通过 Level Zero 控制 CPU 和 GPU。所以程序是将 ISPC 编译后得到的 ISPCRT objects 交给 ISPC Runtime,由 ISPC Runtime 决定是 CPU 还是 GPU 运行,并进行操作(但这个内容是在 ISPCRT Object 中设置的)。ISPCRT Object 是 SPIR-V 格式的,存放文件后缀为.spv

如果你熟悉 Java 的话就很好理解,ISPC 就是 javac,ISPC Runtime 就是 Java。

需要注意一点,如果你只需要代码运行在 CPU 上,那么不需要 ispcrt,只需要ispc编译器即可。

示例代码

示例代码是 ISPC 示例中的 Simple。Simple 项目有两个文件:simple.cppsimple.ispc

simple.cpp的内容如下:

#include <algorithm>
#include <cmath>
#include <iomanip>
#include <iostream>// ispcrt
#include "ispcrt.hpp"std::ostream &operator<<(std::ostream &os, const ISPCRTDeviceType dt) {switch (dt) {case ISPCRT_DEVICE_TYPE_AUTO:os << "Auto";break;case ISPCRT_DEVICE_TYPE_GPU:os << "GPU";break;case ISPCRT_DEVICE_TYPE_CPU:os << "CPU";break;default:break;}return os;
}struct Parameters {float *vin;float *vout;int count;
};void simple_CPU_validation(std::vector<float> vin, std::vector<float> &vgold, const unsigned int SIZE) {for (unsigned int i = 0; i < SIZE; i++) {float v = vin[i];if (v < 3.)v = v * v;elsev = std::sqrt(v);vgold[i] = v;}
}#define EPSILON 0.01f
bool validate_result(std::vector<float> vout, std::vector<float> vgold, const unsigned int SIZE) {bool bValid = true;for (unsigned int i = 0; i < SIZE; i++) {float delta = (float)fabs(vgold[i] - vout[i]);if (delta > EPSILON) {std::cout << "Validation failed on i=" << i << ": vout[i] = " << vout[i] << ", but " << vgold[i]<< " was expected\n";bValid = false;}}return bValid;
}static int run(const ISPCRTDeviceType device_type, const unsigned int SIZE) {std::vector<float> vin(SIZE);std::vector<float> vout(SIZE);std::vector<float> vgold(SIZE);ispcrt::Device device(device_type);// Setup input arrayispcrt::Array<float> vin_dev(device, vin);// Setup output arrayispcrt::Array<float> vout_dev(device, vout);// Setup parameters structureParameters p;p.vin = vin_dev.devicePtr();p.vout = vout_dev.devicePtr();p.count = SIZE;auto p_dev = ispcrt::Array<Parameters>(device, p);// Create module and kernel to executeispcrt::Module module(device, "xe_simple");ispcrt::Kernel kernel(device, module, "simple_ispc");// Create task queue and execute kernelispcrt::TaskQueue queue(device);std::generate(vin.begin(), vin.end(), [i = 0]() mutable { return i++; });// Calculate gold resultsimple_CPU_validation(vin, vgold, SIZE);// ispcrt::Array objects which used as inputs for ISPC kernel should be// explicitly copied to device from hostqueue.copyToDevice(p_dev);queue.copyToDevice(vin_dev);// Launch the kernel on the device using 1 threadauto res = queue.launch(kernel, p_dev, 1);// ispcrt::Array objects which used as outputs of ISPC kernel should be// explicitly copied to host from devicequeue.copyToHost(vout_dev);// Execute queue and syncqueue.sync();double time = -1.0;if (res.valid()) {time = res.time() * 1e-6;}std::cout << time << std::endl;std::cout << "Executed on: " << device_type << '\n' << std::setprecision(6) << std::fixed;// Check and print resultbool bValid = validate_result(vout, vgold, SIZE);if (bValid) {for (int i = 0; i < SIZE; i++) {std::cout << i << ": simple(" << vin[i] << ") = " << vout[i] << '\n';}return 0;}return -1;
}void usage(const char *p) {std::cout << "Usage:\n";std::cout << p << " --cpu | --gpu | -h\n";
}int main(int argc, char *argv[]) {std::ios_base::fmtflags f(std::cout.flags());constexpr unsigned int SIZE = 16;// Run on CPU by defaultISPCRTDeviceType device_type = ISPCRT_DEVICE_TYPE_AUTO;if (argc > 2 || (argc == 2 && std::string(argv[1]) == "-h")) {usage(argv[0]);return -1;}if (argc == 2) {std::string dev_param = argv[1];if (dev_param == "--cpu") {device_type = ISPCRT_DEVICE_TYPE_CPU;} else if (dev_param == "--gpu") {device_type = ISPCRT_DEVICE_TYPE_GPU;} else {usage(argv[0]);return -1;}}int success = run(device_type, SIZE);std::cout.flags(f);return success;
}

simple.ispc的内容如下:

struct Parameters {float *vin;float *vout;int    count;
};task void simple_ispc(void *uniform _p) {Parameters *uniform p = (Parameters * uniform) _p;foreach (index = 0 ... p->count) {// Load the appropriate input value for this program instance.float v = p->vin[index];// Do an arbitrary little computation, but at least make the// computation dependent on the value being processedif (v < 3.)v = v * v;elsev = sqrt(v);// And write the result to the output array.p->vout[index] = v;}
}#include "ispcrt.isph"
DEFINE_CPU_ENTRY_POINT(simple_ispc)

编译流程

编译需要用到 CMake 和 C/C++ 编译器。在 Windows 上就是使用 CMake 和 Visual Studio,Linux 上使用 CMake 和 Clang 或 GCC 就行。

ISPC 分发中包含了一些很有用的 CMake 函数,可以大大降低我们编译所需的工作量。但是需要注意本文中使用 CMake 函数的只能在 v1.18.1 之前的版本使用,后面版本中,相关函数出现了大的变化,但是官方并未对这些函数进行介绍。由于本人也没有 11-13 代核显或者 Intel 独显,所以无法进行尝试,未来如果进行了研究会在这里贴上链接。

建议别想不开非要自己用命令一条条编译。因为各种库都是要手动设置的,Linux 上还好,Windows 上由于库的位置,几乎全是绝对地址,而且cl.exe对有些库的引用有问题,需要设置的太多,这就导致编译所需的命令都超级长,手动编译确实不太方便。

在项目根目录下新建一个CMakeLists.txt,输入以下内容:

cmake_minimum_required(VERSION 3.14)project(simple)
find_package(ispcrt REQUIRED)
add_executable(host_simple simple.cpp)
add_ispc_kernel(xe_simple simple.ispc "")
target_link_libraries(host_simple PRIVATE ispcrt::ispcrt)

由于计算需要交给 GPU 执行,所以操作 CPU 执行的代码加上host_前缀,交给 GPU 的任务就加上xe_前缀进行区分(Host 和 Device 的概念在 GPU 中还是非常常见的,如果你感兴趣)。

新版本的 ISPC 对新的核显架构使用了新的 CMake 函数,你可以在 ISPC 分发目录中的lib/ispcrt/ispc.cmake中看到。

然后就可以开始构建编译了。

按照惯例,新建一个build,在其中构建项目:

mkdir build
cd build
cmake ..

Linux

Linux 的话直接用make即可。

Windows

如果是在 Windows 上,这里会出现一个 Visual Studio 项目,我们点击.sln,然后生成解决方案。但是需要注意一个事情:不知道为什么,我在尝试的时候,有些情况下.sqv等一些文件会生成在build目录下,而不是Debug或者Release这些生成目录下(生成设置没有问题)。.sqv是关键,前文提到过这是程序与 ISPCRT 的桥梁。

解决方案有两种:

  1. 完成将.sqv后手动拖拽到生成目录下。这个方案对于简单的项目(比如说这个示例项目);
  2. 直接强制将其生成到.sln所在目录(也就是build目录下)。

如果使用第二种方法,需要在``的中间加入以下语句来设置生成环境(打开项目的时候 Visual Studio 会告诉你发生了修改):

SET( CMAKE_RUNTIME_OUTPUT_DIRECTORY_DEBUG "${OUTPUT_DIRECTORY}")
SET( CMAKE_RUNTIME_OUTPUT_DIRECTORY_RELEASE "${OUTPUT_DIRECTORY}")
SET( CMAKE_LIBRARY_OUTPUT_DIRECTORY_DEBUG "${OUTPUT_DIRECTORY}")
SET( CMAKE_LIBRARY_OUTPUT_DIRECTORY_RELEASE "${OUTPUT_DIRECTORY}")
SET( CMAKE_ARCHIVE_OUTPUT_DIRECTORY_DEBUG "${OUTPUT_DIRECTORY}")
SET( CMAKE_ARCHIVE_OUTPUT_DIRECTORY_RELEASE "${OUTPUT_DIRECTORY}")

这样我们就可以直接运行了(也不用切换工作目录)。

运行

这个程序既可以在 CPU 上 运行,也可以在 GPU 上运行(默认为 CPU)。

默认无选项(CPU):
请添加图片描述

GPU:

请添加图片描述

希望能帮到有需要的人~

参考资料

Intel® ISPC for Xe

cmake RUNTIME_OUTPUT_DIRECTORY on Windows - stack overflow

这篇关于如何通过ISPC使用Xe(核显)进行计算的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/611583

相关文章

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

pdfmake生成pdf的使用

实际项目中有时会有根据填写的表单数据或者其他格式的数据,将数据自动填充到pdf文件中根据固定模板生成pdf文件的需求 文章目录 利用pdfmake生成pdf文件1.下载安装pdfmake第三方包2.封装生成pdf文件的共用配置3.生成pdf文件的文件模板内容4.调用方法生成pdf 利用pdfmake生成pdf文件 1.下载安装pdfmake第三方包 npm i pdfma

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

业务中14个需要进行A/B测试的时刻[信息图]

在本指南中,我们将全面了解有关 A/B测试 的所有内容。 我们将介绍不同类型的A/B测试,如何有效地规划和启动测试,如何评估测试是否成功,您应该关注哪些指标,多年来我们发现的常见错误等等。 什么是A/B测试? A/B测试(有时称为“分割测试”)是一种实验类型,其中您创建两种或多种内容变体——如登录页面、电子邮件或广告——并将它们显示给不同的受众群体,以查看哪一种效果最好。 本质上,A/B测

git使用的说明总结

Git使用说明 下载安装(下载地址) macOS: Git - Downloading macOS Windows: Git - Downloading Windows Linux/Unix: Git (git-scm.com) 创建新仓库 本地创建新仓库:创建新文件夹,进入文件夹目录,执行指令 git init ,用以创建新的git 克隆仓库 执行指令用以创建一个本地仓库的