如何通过ISPC使用Xe(核显)进行计算

2024-01-16 06:20
文章标签 进行 使用 计算 xe 核显 ispc

本文主要是介绍如何通过ISPC使用Xe(核显)进行计算,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

我一直以为 ISPC 的 Xe 是只包含独立显卡的,比如 A770 这些,没想到看了眼文档是可以使用核显的,但只能在 Linux 和 Windows 上,macOS 不行,就想试试看。

写本文是因为 ISPC 已经出现了三四个版本的大改,但是官方文档Intel® ISPC for Xe并未提及这些。不过这篇官方文档依旧可以带来很多帮助。

准备工作

本文使用 Windows 系统进行操作,Linux 操作类似。(实际使用建议使用 Linux,Windows 上毛病比较多)

此外需要注意不能使用 WSL。个人猜测是因为 WSL 无法识别核显型号,因为 lspci的结果中,显卡显示是3D controller,而不是正经 Linux 发行版中的,比如VGA compatible controller(厂商数据也不对)。CUDA 是通过一个库实现的,也就是中继的,但是 Intel 好像没有弄这样的库。

此外,ISPC 最新的 Windows 版本针对我的核显的代码不能用:编译没问题,但是运行不成功,显示版本问题。原因是我使用的 UHD 630 是 Gen 9 的,而目前 Windows 版本只支持 11-13 代或者 Arc 独显。

目前 Windows 版本只支持 11-13 代或者独显

所以如果你和我遇到一样的问题,那么请安装 v1.18.1 或者 v1.18.0 的 ISPC,这样就可以成功运行了。

成功准备好 ISPC 之后,安装 Level Zero Loader。方法很简单,下载level-zero-sdk,之后配置环境变量LEVEL_ZERO_PATH即可。

运行原理

ISPC Runtime 是 Level Zero 的高级化产物(类似汇编语言和高级语言的关系),可以通过 Level Zero 控制 CPU 和 GPU。所以程序是将 ISPC 编译后得到的 ISPCRT objects 交给 ISPC Runtime,由 ISPC Runtime 决定是 CPU 还是 GPU 运行,并进行操作(但这个内容是在 ISPCRT Object 中设置的)。ISPCRT Object 是 SPIR-V 格式的,存放文件后缀为.spv

如果你熟悉 Java 的话就很好理解,ISPC 就是 javac,ISPC Runtime 就是 Java。

需要注意一点,如果你只需要代码运行在 CPU 上,那么不需要 ispcrt,只需要ispc编译器即可。

示例代码

示例代码是 ISPC 示例中的 Simple。Simple 项目有两个文件:simple.cppsimple.ispc

simple.cpp的内容如下:

#include <algorithm>
#include <cmath>
#include <iomanip>
#include <iostream>// ispcrt
#include "ispcrt.hpp"std::ostream &operator<<(std::ostream &os, const ISPCRTDeviceType dt) {switch (dt) {case ISPCRT_DEVICE_TYPE_AUTO:os << "Auto";break;case ISPCRT_DEVICE_TYPE_GPU:os << "GPU";break;case ISPCRT_DEVICE_TYPE_CPU:os << "CPU";break;default:break;}return os;
}struct Parameters {float *vin;float *vout;int count;
};void simple_CPU_validation(std::vector<float> vin, std::vector<float> &vgold, const unsigned int SIZE) {for (unsigned int i = 0; i < SIZE; i++) {float v = vin[i];if (v < 3.)v = v * v;elsev = std::sqrt(v);vgold[i] = v;}
}#define EPSILON 0.01f
bool validate_result(std::vector<float> vout, std::vector<float> vgold, const unsigned int SIZE) {bool bValid = true;for (unsigned int i = 0; i < SIZE; i++) {float delta = (float)fabs(vgold[i] - vout[i]);if (delta > EPSILON) {std::cout << "Validation failed on i=" << i << ": vout[i] = " << vout[i] << ", but " << vgold[i]<< " was expected\n";bValid = false;}}return bValid;
}static int run(const ISPCRTDeviceType device_type, const unsigned int SIZE) {std::vector<float> vin(SIZE);std::vector<float> vout(SIZE);std::vector<float> vgold(SIZE);ispcrt::Device device(device_type);// Setup input arrayispcrt::Array<float> vin_dev(device, vin);// Setup output arrayispcrt::Array<float> vout_dev(device, vout);// Setup parameters structureParameters p;p.vin = vin_dev.devicePtr();p.vout = vout_dev.devicePtr();p.count = SIZE;auto p_dev = ispcrt::Array<Parameters>(device, p);// Create module and kernel to executeispcrt::Module module(device, "xe_simple");ispcrt::Kernel kernel(device, module, "simple_ispc");// Create task queue and execute kernelispcrt::TaskQueue queue(device);std::generate(vin.begin(), vin.end(), [i = 0]() mutable { return i++; });// Calculate gold resultsimple_CPU_validation(vin, vgold, SIZE);// ispcrt::Array objects which used as inputs for ISPC kernel should be// explicitly copied to device from hostqueue.copyToDevice(p_dev);queue.copyToDevice(vin_dev);// Launch the kernel on the device using 1 threadauto res = queue.launch(kernel, p_dev, 1);// ispcrt::Array objects which used as outputs of ISPC kernel should be// explicitly copied to host from devicequeue.copyToHost(vout_dev);// Execute queue and syncqueue.sync();double time = -1.0;if (res.valid()) {time = res.time() * 1e-6;}std::cout << time << std::endl;std::cout << "Executed on: " << device_type << '\n' << std::setprecision(6) << std::fixed;// Check and print resultbool bValid = validate_result(vout, vgold, SIZE);if (bValid) {for (int i = 0; i < SIZE; i++) {std::cout << i << ": simple(" << vin[i] << ") = " << vout[i] << '\n';}return 0;}return -1;
}void usage(const char *p) {std::cout << "Usage:\n";std::cout << p << " --cpu | --gpu | -h\n";
}int main(int argc, char *argv[]) {std::ios_base::fmtflags f(std::cout.flags());constexpr unsigned int SIZE = 16;// Run on CPU by defaultISPCRTDeviceType device_type = ISPCRT_DEVICE_TYPE_AUTO;if (argc > 2 || (argc == 2 && std::string(argv[1]) == "-h")) {usage(argv[0]);return -1;}if (argc == 2) {std::string dev_param = argv[1];if (dev_param == "--cpu") {device_type = ISPCRT_DEVICE_TYPE_CPU;} else if (dev_param == "--gpu") {device_type = ISPCRT_DEVICE_TYPE_GPU;} else {usage(argv[0]);return -1;}}int success = run(device_type, SIZE);std::cout.flags(f);return success;
}

simple.ispc的内容如下:

struct Parameters {float *vin;float *vout;int    count;
};task void simple_ispc(void *uniform _p) {Parameters *uniform p = (Parameters * uniform) _p;foreach (index = 0 ... p->count) {// Load the appropriate input value for this program instance.float v = p->vin[index];// Do an arbitrary little computation, but at least make the// computation dependent on the value being processedif (v < 3.)v = v * v;elsev = sqrt(v);// And write the result to the output array.p->vout[index] = v;}
}#include "ispcrt.isph"
DEFINE_CPU_ENTRY_POINT(simple_ispc)

编译流程

编译需要用到 CMake 和 C/C++ 编译器。在 Windows 上就是使用 CMake 和 Visual Studio,Linux 上使用 CMake 和 Clang 或 GCC 就行。

ISPC 分发中包含了一些很有用的 CMake 函数,可以大大降低我们编译所需的工作量。但是需要注意本文中使用 CMake 函数的只能在 v1.18.1 之前的版本使用,后面版本中,相关函数出现了大的变化,但是官方并未对这些函数进行介绍。由于本人也没有 11-13 代核显或者 Intel 独显,所以无法进行尝试,未来如果进行了研究会在这里贴上链接。

建议别想不开非要自己用命令一条条编译。因为各种库都是要手动设置的,Linux 上还好,Windows 上由于库的位置,几乎全是绝对地址,而且cl.exe对有些库的引用有问题,需要设置的太多,这就导致编译所需的命令都超级长,手动编译确实不太方便。

在项目根目录下新建一个CMakeLists.txt,输入以下内容:

cmake_minimum_required(VERSION 3.14)project(simple)
find_package(ispcrt REQUIRED)
add_executable(host_simple simple.cpp)
add_ispc_kernel(xe_simple simple.ispc "")
target_link_libraries(host_simple PRIVATE ispcrt::ispcrt)

由于计算需要交给 GPU 执行,所以操作 CPU 执行的代码加上host_前缀,交给 GPU 的任务就加上xe_前缀进行区分(Host 和 Device 的概念在 GPU 中还是非常常见的,如果你感兴趣)。

新版本的 ISPC 对新的核显架构使用了新的 CMake 函数,你可以在 ISPC 分发目录中的lib/ispcrt/ispc.cmake中看到。

然后就可以开始构建编译了。

按照惯例,新建一个build,在其中构建项目:

mkdir build
cd build
cmake ..

Linux

Linux 的话直接用make即可。

Windows

如果是在 Windows 上,这里会出现一个 Visual Studio 项目,我们点击.sln,然后生成解决方案。但是需要注意一个事情:不知道为什么,我在尝试的时候,有些情况下.sqv等一些文件会生成在build目录下,而不是Debug或者Release这些生成目录下(生成设置没有问题)。.sqv是关键,前文提到过这是程序与 ISPCRT 的桥梁。

解决方案有两种:

  1. 完成将.sqv后手动拖拽到生成目录下。这个方案对于简单的项目(比如说这个示例项目);
  2. 直接强制将其生成到.sln所在目录(也就是build目录下)。

如果使用第二种方法,需要在``的中间加入以下语句来设置生成环境(打开项目的时候 Visual Studio 会告诉你发生了修改):

SET( CMAKE_RUNTIME_OUTPUT_DIRECTORY_DEBUG "${OUTPUT_DIRECTORY}")
SET( CMAKE_RUNTIME_OUTPUT_DIRECTORY_RELEASE "${OUTPUT_DIRECTORY}")
SET( CMAKE_LIBRARY_OUTPUT_DIRECTORY_DEBUG "${OUTPUT_DIRECTORY}")
SET( CMAKE_LIBRARY_OUTPUT_DIRECTORY_RELEASE "${OUTPUT_DIRECTORY}")
SET( CMAKE_ARCHIVE_OUTPUT_DIRECTORY_DEBUG "${OUTPUT_DIRECTORY}")
SET( CMAKE_ARCHIVE_OUTPUT_DIRECTORY_RELEASE "${OUTPUT_DIRECTORY}")

这样我们就可以直接运行了(也不用切换工作目录)。

运行

这个程序既可以在 CPU 上 运行,也可以在 GPU 上运行(默认为 CPU)。

默认无选项(CPU):
请添加图片描述

GPU:

请添加图片描述

希望能帮到有需要的人~

参考资料

Intel® ISPC for Xe

cmake RUNTIME_OUTPUT_DIRECTORY on Windows - stack overflow

这篇关于如何通过ISPC使用Xe(核显)进行计算的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/611583

相关文章

使用Docker构建Python Flask程序的详细教程

《使用Docker构建PythonFlask程序的详细教程》在当今的软件开发领域,容器化技术正变得越来越流行,而Docker无疑是其中的佼佼者,本文我们就来聊聊如何使用Docker构建一个简单的Py... 目录引言一、准备工作二、创建 Flask 应用程序三、创建 dockerfile四、构建 Docker

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Python使用pip工具实现包自动更新的多种方法

《Python使用pip工具实现包自动更新的多种方法》本文深入探讨了使用Python的pip工具实现包自动更新的各种方法和技术,我们将从基础概念开始,逐步介绍手动更新方法、自动化脚本编写、结合CI/C... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Conda与Python venv虚拟环境的区别与使用方法详解

《Conda与Pythonvenv虚拟环境的区别与使用方法详解》随着Python社区的成长,虚拟环境的概念和技术也在不断发展,:本文主要介绍Conda与Pythonvenv虚拟环境的区别与使用... 目录前言一、Conda 与 python venv 的核心区别1. Conda 的特点2. Python v

Spring Boot中WebSocket常用使用方法详解

《SpringBoot中WebSocket常用使用方法详解》本文从WebSocket的基础概念出发,详细介绍了SpringBoot集成WebSocket的步骤,并重点讲解了常用的使用方法,包括简单消... 目录一、WebSocket基础概念1.1 什么是WebSocket1.2 WebSocket与HTTP

C#中Guid类使用小结

《C#中Guid类使用小结》本文主要介绍了C#中Guid类用于生成和操作128位的唯一标识符,用于数据库主键及分布式系统,支持通过NewGuid、Parse等方法生成,感兴趣的可以了解一下... 目录前言一、什么是 Guid二、生成 Guid1. 使用 Guid.NewGuid() 方法2. 从字符串创建

Python使用python-can实现合并BLF文件

《Python使用python-can实现合并BLF文件》python-can库是Python生态中专注于CAN总线通信与数据处理的强大工具,本文将使用python-can为BLF文件合并提供高效灵活... 目录一、python-can 库:CAN 数据处理的利器二、BLF 文件合并核心代码解析1. 基础合

Python使用OpenCV实现获取视频时长的小工具

《Python使用OpenCV实现获取视频时长的小工具》在处理视频数据时,获取视频的时长是一项常见且基础的需求,本文将详细介绍如何使用Python和OpenCV获取视频时长,并对每一行代码进行深入解析... 目录一、代码实现二、代码解析1. 导入 OpenCV 库2. 定义获取视频时长的函数3. 打开视频文

Spring IoC 容器的使用详解(最新整理)

《SpringIoC容器的使用详解(最新整理)》文章介绍了Spring框架中的应用分层思想与IoC容器原理,通过分层解耦业务逻辑、数据访问等模块,IoC容器利用@Component注解管理Bean... 目录1. 应用分层2. IoC 的介绍3. IoC 容器的使用3.1. bean 的存储3.2. 方法注

Python内置函数之classmethod函数使用详解

《Python内置函数之classmethod函数使用详解》:本文主要介绍Python内置函数之classmethod函数使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 类方法定义与基本语法2. 类方法 vs 实例方法 vs 静态方法3. 核心特性与用法(1编程客