JUC-线程中断机制和LockSupport

2024-01-16 02:44

本文主要是介绍JUC-线程中断机制和LockSupport,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

线程中断机制

概念

java提供了一种用于停止线程的协商机制-中断。称为中断标识协商机制。

常用API

  • public void interrupt()
    仅仅让线程的中断标志位设置为true。不进行其他操作。
  • public boolean isInterrupted()
    获取中断标志位的状态。
  • public static boolean interrupted()
    获取中断标志位的状态。并将中断标志位设置为false

如何停止中断运行的线程

volatile变量实现

private static volatile boolean isStop = false;public static void main(String[] args) {new Thread(() -> {while (true) {if (isStop) {System.out.println(Thread.currentThread().getName() + "线程isStop = true,自己退出");break;}System.out.println("-------hello interrupt--------");}}, "t1").start();try {TimeUnit.SECONDS.sleep(1);} catch (InterruptedException e) {e.printStackTrace();}isStop = true;}

AtomicBoolean实现

private static final AtomicBoolean atomicBoolean = new AtomicBoolean(true);public static void main(String[] args) {new Thread(() -> {while (atomicBoolean.get()) {try {TimeUnit.MILLISECONDS.sleep(200);} catch (InterruptedException e) {e.printStackTrace();}System.out.println("-------hello------");}}).start();try {TimeUnit.SECONDS.sleep(1);} catch (InterruptedException e) {e.printStackTrace();}atomicBoolean.set(false);}

中断API interrupt和isInterrupted

public static void main(String[] args) {Thread t1 = new Thread(() -> {while (true) {if (Thread.currentThread().isInterrupted()) {System.out.println("-----t1 线程被中断了,程序结束");break;}System.out.println("-----hello-------");}}, "t1");t1.start();System.out.println("t1是否被中断:" + t1.isInterrupted());try {TimeUnit.MILLISECONDS.sleep(1);} catch (InterruptedException e) {e.printStackTrace();}t1.interrupt();System.out.println("t1是否被中断:" + t1.isInterrupted());}

注意

  • 如果线程处于正常活动状态,interrupt会将该线程中断状态位设置为true。要想该线程进行进一步处理需要自己根据中断状态为来写业务逻辑。
  • 如果线程处于阻塞状态(sleep, wait, join)在别的线程调用当前线程interrupt方法,那么线程立即退出阻塞状态,并抛出InterruptException异常,并将中断标志为清除(置为false)
Thread t1 = new Thread(() -> {while (true){if(Thread.currentThread().isInterrupted()){System.out.println(Thread.currentThread().getName()+"\t " +"中断标志位:"+Thread.currentThread().isInterrupted()+" 程序停止");break;}try {Thread.sleep(200);} catch (InterruptedException e) {Thread.currentThread().interrupt();//为什么要在异常处,再调用一次??// 阻塞状态下的线程设置中断标志位为true,会报异常。中断状态位置为false。导致死循环。因此需要再次设置为truee.printStackTrace();}System.out.println("-----hello InterruptDemo3");}}, "t1");t1.start();//暂停几秒钟线程try { TimeUnit.SECONDS.sleep(1); } catch (InterruptedException e) { e.printStackTrace(); }new Thread(() -> t1.interrupt(),"t2").start();

拓展:线程有哪些状态?7种状态
创建,就绪(等待CPU),运行,阻塞(等待锁对象),等待(等待事件),超时等待,结束
sleep不会释放锁。wait会释放锁。因此sleep进入等待状态。wait进入阻塞状态。

LockSupport

LockSupport是线程阻塞和唤醒的工具类。主要通过park阻塞和unpark唤醒。

线程等待唤醒机制

Synchronized锁对象的wait和notify

Object objectLock = new Object();new Thread(() -> {try { TimeUnit.SECONDS.sleep(1); } catch (InterruptedException e) { e.printStackTrace(); }synchronized (objectLock){System.out.println(Thread.currentThread().getName()+"\t ----come in");try {objectLock.wait();} catch (InterruptedException e) {e.printStackTrace();}System.out.println(Thread.currentThread().getName()+"\t ----被唤醒");}},"t1").start();//暂停几秒钟线程//try { TimeUnit.SECONDS.sleep(1); } catch (InterruptedException e) { e.printStackTrace(); }new Thread(() -> {synchronized (objectLock){objectLock.notify();System.out.println(Thread.currentThread().getName()+"\t ----发出通知");}},"t2").start();

限制:

  • 必须在Synchronized同步块中
  • wait必须在之前notify。否则通知唤醒会失效。

Lock.condition的await和signal

 Lock lock = new ReentrantLock();Condition condition = lock.newCondition();new Thread(() -> {try { TimeUnit.SECONDS.sleep(1); } catch (InterruptedException e) { e.printStackTrace(); }lock.lock();try{System.out.println(Thread.currentThread().getName()+"\t ----come in");condition.await();System.out.println(Thread.currentThread().getName()+"\t ----被唤醒");} catch (InterruptedException e) {e.printStackTrace();} finally {lock.unlock();}},"t1").start();//暂停几秒钟线程//try { TimeUnit.SECONDS.sleep(1); } catch (InterruptedException e) { e.printStackTrace(); }new Thread(() -> {lock.lock();try{condition.signal();System.out.println(Thread.currentThread().getName()+"\t ----发出通知");}finally {lock.unlock();}},"t2").start();

LockSupport的park和unpark

Thread t1 = new Thread(() -> {try { TimeUnit.SECONDS.sleep(3); } catch (InterruptedException e) { e.printStackTrace(); }System.out.println(Thread.currentThread().getName() + "\t ----come in"+System.currentTimeMillis());LockSupport.park();System.out.println(Thread.currentThread().getName() + "\t ----被唤醒"+System.currentTimeMillis());}, "t1");t1.start();//暂停几秒钟线程//try { TimeUnit.SECONDS.sleep(1); } catch (InterruptedException e) { e.printStackTrace(); }new Thread(() -> {LockSupport.unpark(t1);System.out.println(Thread.currentThread().getName()+"\t ----发出通知");},"t2").start();

优点:

  • 不需要在锁块中,本身就可以让线程同步。
  • park和unpark不需要有先后顺序。unpark相当于给了park一个凭证。unpark在park执行前也可以让park唤醒。相当于提前给了凭证。(而前面两种就不行)
  • 一个park需要一个凭证。但是不同的unpark作用于一个线程只能给一个凭证。(即是连续调用多次unpark和调用一次作用是一样的)

这篇关于JUC-线程中断机制和LockSupport的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/611068

相关文章

JVM 的类初始化机制

前言 当你在 Java 程序中new对象时,有没有考虑过 JVM 是如何把静态的字节码(byte code)转化为运行时对象的呢,这个问题看似简单,但清楚的同学相信也不会太多,这篇文章首先介绍 JVM 类初始化的机制,然后给出几个易出错的实例来分析,帮助大家更好理解这个知识点。 JVM 将字节码转化为运行时对象分为三个阶段,分别是:loading 、Linking、initialization

第10章 中断和动态时钟显示

第10章 中断和动态时钟显示 从本章开始,按照书籍的划分,第10章开始就进入保护模式(Protected Mode)部分了,感觉从这里开始难度突然就增加了。 书中介绍了为什么有中断(Interrupt)的设计,中断的几种方式:外部硬件中断、内部中断和软中断。通过中断做了一个会走的时钟和屏幕上输入字符的程序。 我自己理解中断的一些作用: 为了更好的利用处理器的性能。协同快速和慢速设备一起工作

Java ArrayList扩容机制 (源码解读)

结论:初始长度为10,若所需长度小于1.5倍原长度,则按照1.5倍扩容。若不够用则按照所需长度扩容。 一. 明确类内部重要变量含义         1:数组默认长度         2:这是一个共享的空数组实例,用于明确创建长度为0时的ArrayList ,比如通过 new ArrayList<>(0),ArrayList 内部的数组 elementData 会指向这个 EMPTY_EL

【编程底层思考】垃圾收集机制,GC算法,垃圾收集器类型概述

Java的垃圾收集(Garbage Collection,GC)机制是Java语言的一大特色,它负责自动管理内存的回收,释放不再使用的对象所占用的内存。以下是对Java垃圾收集机制的详细介绍: 一、垃圾收集机制概述: 对象存活判断:垃圾收集器定期检查堆内存中的对象,判断哪些对象是“垃圾”,即不再被任何引用链直接或间接引用的对象。内存回收:将判断为垃圾的对象占用的内存进行回收,以便重新使用。

【Tools】大模型中的自注意力机制

摇来摇去摇碎点点的金黄 伸手牵来一片梦的霞光 南方的小巷推开多情的门窗 年轻和我们歌唱 摇来摇去摇着温柔的阳光 轻轻托起一件梦的衣裳 古老的都市每天都改变模样                      🎵 方芳《摇太阳》 自注意力机制(Self-Attention)是一种在Transformer等大模型中经常使用的注意力机制。该机制通过对输入序列中的每个元素计算与其他元素之间的相似性,

如何通俗理解注意力机制?

1、注意力机制(Attention Mechanism)是机器学习和深度学习中一种模拟人类注意力的方法,用于提高模型在处理大量信息时的效率和效果。通俗地理解,它就像是在一堆信息中找到最重要的部分,把注意力集中在这些关键点上,从而更好地完成任务。以下是几个简单的比喻来帮助理解注意力机制: 2、寻找重点:想象一下,你在阅读一篇文章的时候,有些段落特别重要,你会特别注意这些段落,反复阅读,而对其他部分

【Tools】大模型中的注意力机制

摇来摇去摇碎点点的金黄 伸手牵来一片梦的霞光 南方的小巷推开多情的门窗 年轻和我们歌唱 摇来摇去摇着温柔的阳光 轻轻托起一件梦的衣裳 古老的都市每天都改变模样                      🎵 方芳《摇太阳》 在大模型中,注意力机制是一种重要的技术,它被广泛应用于自然语言处理领域,特别是在机器翻译和语言模型中。 注意力机制的基本思想是通过计算输入序列中各个位置的权重,以确

线程的四种操作

所属专栏:Java学习        1. 线程的开启 start和run的区别: run:描述了线程要执行的任务,也可以称为线程的入口 start:调用系统函数,真正的在系统内核中创建线程(创建PCB,加入到链表中),此处的start会根据不同的系统,分别调用不同的api,创建好之后的线程,再单独去执行run(所以说,start的本质是调用系统api,系统的api

FreeRTOS内部机制学习03(事件组内部机制)

文章目录 事件组使用的场景事件组的核心以及Set事件API做的事情事件组的特殊之处事件组为什么不关闭中断xEventGroupSetBitsFromISR内部是怎么做的? 事件组使用的场景 学校组织秋游,组长在等待: 张三:我到了 李四:我到了 王五:我到了 组长说:好,大家都到齐了,出发! 秋游回来第二天就要提交一篇心得报告,组长在焦急等待:张三、李四、王五谁先写好就交谁的

UVM:callback机制的意义和用法

1. 作用         Callback机制在UVM验证平台,最大用处就是为了提高验证平台的可重用性。在不创建复杂的OOP层次结构前提下,针对组件中的某些行为,在其之前后之后,内置一些函数,增加或者修改UVM组件的操作,增加新的功能,从而实现一个环境多个用例。此外还可以通过Callback机制构建异常的测试用例。 2. 使用步骤         (1)在UVM组件中内嵌callback函