【Codeforces Round 340 (Div 2)C】【暴力排序枚举】Watering Flowers 2个灌溉器灌溉所有点最小的rr+RR

本文主要是介绍【Codeforces Round 340 (Div 2)C】【暴力排序枚举】Watering Flowers 2个灌溉器灌溉所有点最小的rr+RR,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

C. Watering Flowers
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

A flowerbed has many flowers and two fountains.

You can adjust the water pressure and set any values r1(r1 ≥ 0) and r2(r2 ≥ 0), giving the distances at which the water is spread from the first and second fountain respectively. You have to set such r1 and r2 that all the flowers are watered, that is, for each flower, the distance between the flower and the first fountain doesn't exceed r1, or the distance to the second fountain doesn't exceed r2. It's OK if some flowers are watered by both fountains.

You need to decrease the amount of water you need, that is set such r1 and r2 that all the flowers are watered and the r12 + r22 is minimum possible. Find this minimum value.

Input

The first line of the input contains integers nx1y1x2y2 (1 ≤ n ≤ 2000 - 107 ≤ x1, y1, x2, y2 ≤ 107) — the number of flowers, the coordinates of the first and the second fountain.

Next follow n lines. The i-th of these lines contains integers xi and yi ( - 107 ≤ xi, yi ≤ 107) — the coordinates of thei-th flower.

It is guaranteed that all n + 2 points in the input are distinct.

Output

Print the minimum possible value r12 + r22. Note, that in this problem optimal answer is always integer.

Examples
input
2 -1 0 5 3
0 2
5 2
output
6
input
4 0 0 5 0
9 4
8 3
-1 0
1 4
output
33
Note

The first sample is (r12 = 5r22 = 1):The second sample is (r12 = 1r22 = 32):

#include<stdio.h>
#include<iostream>
#include<string.h>
#include<string>
#include<ctype.h>
#include<math.h>
#include<set>
#include<map>
#include<vector>
#include<queue>
#include<bitset>
#include<algorithm>
#include<time.h>
using namespace std;
void fre() { freopen("c://test//input.in", "r", stdin); freopen("c://test//output.out", "w", stdout); }
#define MS(x,y) memset(x,y,sizeof(x))
#define MC(x,y) memcpy(x,y,sizeof(x))
#define MP(x,y) make_pair(x,y)
#define ls o<<1
#define rs o<<1|1
typedef long long LL;
typedef unsigned long long UL;
typedef unsigned int UI;
template <class T1, class T2>inline void gmax(T1 &a, T2 b) { if (b>a)a = b; }
template <class T1, class T2>inline void gmin(T1 &a, T2 b) { if (b<a)a = b; }
const int N = 2020, M = 0, Z = 1e9 + 7, ms63 = 0x3f3f3f3f;
int n;
LL X1, Y1, X2, Y2;
LL x[N], y[N];
LL K(LL x) { return x*x; }
LL check(LL r)
{r = r*r;LL R=0;for (int i = 1; i <= n; ++i){if (K(x[i] - X1) + K(y[i] - Y1) <= r);else{gmax(R, K(x[i] - X2) + K(y[i] - Y2));}}return r+R;
}
struct A
{LL x, y, d, D;bool operator < (const A& b)const {return d < b.d;}
}a[N];
int main()
{while (~scanf("%d", &n)){scanf("%lld%lld%lld%lld", &X1,&Y1,&X2,&Y2);for (int i = 1; i <= n; ++i){scanf("%lld%lld", &a[i].x, &a[i].y);a[i].d = K(a[i].x - X1) + K(a[i].y - Y1);a[i].D = K(a[i].x - X2) + K(a[i].y - Y2);}sort(a + 1, a + n + 1); a[0].d = 0;LL ans = 1e18;for (int i = 0; i <= n; ++i){LL R = 0;for (int j = i + 1; j <= n; ++j)gmax(R, a[j].D);gmin(ans, a[i].d + R);}printf("%lld\n", ans);}return 0;
}
/*
【trick&&吐槽】
最近做题太不认真了,这题我竟然没怎么想清楚就写了三分。
写完才发现样例都跑不出。实在是太蠢了!
三分是错误的。
因为在r位于[a[p].d a[p+1].d]范围内时,可能当r为两侧(a[p].d a[p+1].d)的权值时更优。
不满足整体单峰性。【题意】
有2个灌溉器,坐标分别在(X1,Y1)和(X2,Y2)
有n个点需要被灌溉,给出你坐标。
问你,我们如何设置这2个灌溉器的灌溉半径r与R,才能使得所有的点都被灌溉到。
且r^2+R^2尽可能小。【类型】
暴力排序枚举 or 三分【分析】
很显然,r和R都是恰好灌溉到距离其最远的点就好了。
然而,这不意味着r和R是整数。
只意味着r^2与R^2是整数。我们发现点数n很小,只有2000
于是自然想到,我们可以暴力。
如果我们把每个点到1号灌溉源距离的平方设为d,到2号灌溉源距离的平方设为D
那么,我们枚举r^2,只要把所有的d排成升序依次枚举即可。
剩下的灌溉不到的,让2号灌溉源处理。【时间复杂度&&优化】
O(n^2)*/


这篇关于【Codeforces Round 340 (Div 2)C】【暴力排序枚举】Watering Flowers 2个灌溉器灌溉所有点最小的rr+RR的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/610437

相关文章

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

usaco 1.3 Mixing Milk (结构体排序 qsort) and hdu 2020(sort)

到了这题学会了结构体排序 于是回去修改了 1.2 milking cows 的算法~ 结构体排序核心: 1.结构体定义 struct Milk{int price;int milks;}milk[5000]; 2.自定义的比较函数,若返回值为正,qsort 函数判定a>b ;为负,a<b;为0,a==b; int milkcmp(const void *va,c

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n

poj 1287 Networking(prim or kruscal最小生成树)

题意给你点与点间距离,求最小生成树。 注意点是,两点之间可能有不同的路,输入的时候选择最小的,和之前有道最短路WA的题目类似。 prim代码: #include<stdio.h>const int MaxN = 51;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int P;int prim(){bool vis[MaxN];

poj 2349 Arctic Network uva 10369(prim or kruscal最小生成树)

题目很麻烦,因为不熟悉最小生成树的算法调试了好久。 感觉网上的题目解释都没说得很清楚,不适合新手。自己写一个。 题意:给你点的坐标,然后两点间可以有两种方式来通信:第一种是卫星通信,第二种是无线电通信。 卫星通信:任何两个有卫星频道的点间都可以直接建立连接,与点间的距离无关; 无线电通信:两个点之间的距离不能超过D,无线电收发器的功率越大,D越大,越昂贵。 计算无线电收发器D

poj 1734 (floyd求最小环并打印路径)

题意: 求图中的一个最小环,并打印路径。 解析: ans 保存最小环长度。 一直wa,最后终于找到原因,inf开太大爆掉了。。。 虽然0x3f3f3f3f用memset好用,但是还是有局限性。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#incl

hdu 2489 (dfs枚举 + prim)

题意: 对于一棵顶点和边都有权值的树,使用下面的等式来计算Ratio 给定一个n 个顶点的完全图及它所有顶点和边的权值,找到一个该图含有m 个顶点的子图,并且让这个子图的Ratio 值在所有m 个顶点的树中最小。 解析: 因为数据量不大,先用dfs枚举搭配出m个子节点,算出点和,然后套个prim算出边和,每次比较大小即可。 dfs没有写好,A的老泪纵横。 错在把index在d

hdu 1102 uva 10397(最小生成树prim)

hdu 1102: 题意: 给一个邻接矩阵,给一些村庄间已经修的路,问最小生成树。 解析: 把已经修的路的权值改为0,套个prim()。 注意prim 最外层循坏为n-1。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstri

hdu 1285(拓扑排序)

题意: 给各个队间的胜负关系,让排名次,名词相同按从小到大排。 解析: 拓扑排序是应用于有向无回路图(Direct Acyclic Graph,简称DAG)上的一种排序方式,对一个有向无回路图进行拓扑排序后,所有的顶点形成一个序列,对所有边(u,v),满足u 在v 的前面。该序列说明了顶点表示的事件或状态发生的整体顺序。比较经典的是在工程活动上,某些工程完成后,另一些工程才能继续,此时

poj 2175 最小费用最大流TLE

题意: 一条街上有n个大楼,坐标为xi,yi,bi个人在里面工作。 然后防空洞的坐标为pj,qj,可以容纳cj个人。 从大楼i中的人到防空洞j去避难所需的时间为 abs(xi - pi) + (yi - qi) + 1。 现在设计了一个避难计划,指定从大楼i到防空洞j避难的人数 eij。 判断如果按照原计划进行,所有人避难所用的时间总和是不是最小的。 若是,输出“OPETIMAL",若