Python Matplotlib 动画教程:提高可视化吸引力的强大工具【第24篇—python:Matplotlib】

本文主要是介绍Python Matplotlib 动画教程:提高可视化吸引力的强大工具【第24篇—python:Matplotlib】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 🍖 方法一:使用pause()函数
    • 🚀 方法二:使用FuncAnimation()函数
      • 🥋 线性图动画:
      • 🎻 Python中的条形图追赶动画
      • 🌌 Python中的散点图动画:
      • 🛹 条形图追赶的水平移动:
    • 🛬 wuhu!起飞!

动画是提高可视化吸引力和用户吸引度的优秀手段。它能够以有意义的方式展示数据可视化。Python提供了强大的库,使我们能够轻松创建动画可视化。Matplotlib是一个广受欢迎的数据可视化库,通常用于绘制数据图表以及创建基于内置函数的动画。

使用Matplotlib创建动画有两种主要方法:

  • 使用pause()函数
  • 使用FuncAnimation()函数

🍖 方法一:使用pause()函数

在这种方法中,我们使用matplotlib库的pyplot模块中的pause()函数来实现暂停。该函数在程序执行过程中会暂停指定的时间间隔,使动画能够逐帧展示。下面是一个示例,演示了如何使用Matplotlib创建一个简单的线性图,并通过pause()函数设置适当的时间间隔展示动画:

from matplotlib import pyplot as pltx = []
y = []for i in range(100):x.append(i)y.append(i)plt.xlim(0, 100)plt.ylim(0, 100)plt.plot(x, y, color='green')plt.pause(0.01)plt.show()

输出:

在这里插入图片描述

同样,pause()函数也可以用于在各种图形中创建动画。

🚀 方法二:使用FuncAnimation()函数

FuncAnimation()函数不会自行创建动画,而是从我们传递的一系列图形中生成动画。其语法如下:

from matplotlib.animation import FuncAnimationanimation = FuncAnimation(figure, animation_function, frames=None, init_func=None, fargs=None, save_count=None, cache_frame_data=True, **kwargs)

现在,我们可以使用FuncAnimation函数创建多种类型的动画。以下是几个示例:

🥋 线性图动画:

在这个例子中,我们创建了一个简单的线性图,展示了线条的动画效果。通过FuncAnimation,我们可以定义动画的具体表现形式,然后将其传递给FuncAnimation。

from matplotlib.animation import FuncAnimation
import numpy as npx = []
y = []
figure, ax = plt.subplots()ax.set_xlim(0, 100)
ax.set_ylim(0, 12)line, = ax.plot(0, 0)def animation_function(i):x.append(i * 15)y.append(i)line.set_xdata(x)line.set_ydata(y)return line,animation = FuncAnimation(figure,func=animation_function,frames=np.arange(0, 10, 0.1),interval=10)
plt.show()

输出:

在这里插入图片描述

🎻 Python中的条形图追赶动画

在这个例子中,我们展示了一个条形图动画,每个条形图都有自己的动画效果。

import numpy as npplt.rcParams['font.sans-serif'] = ['Microsoft YaHei']
fig = plt.figure(figsize=(7, 5))
axes = fig.add_subplot(1, 1, 1)
axes.set_ylim(0, 300)
palette = ['blue', 'red', 'green', 'darkorange', 'maroon', 'black']y1, y2, y3, y4, y5, y6 = [], [], [], [], [], []def animation_function(i):y1 = iy2 = 6 * iy3 = 3 * iy4 = 2 * iy5 = 5 * iy6 = 3 * iplt.xlabel("国家")plt.ylabel("国家GDP")plt.bar(["印度", "中国", "德国", "美国", "加拿大", "英国"],[y1, y2, y3, y4, y5, y6],color=palette)plt.title("条形图动画")animation = FuncAnimation(fig, animation_function,interval=50)
plt.show()

输出:

在这里插入图片描述

🌌 Python中的散点图动画:

在这个例子中,我们使用随机函数在Python中创建了一个动画散点图。通过迭代animation_func,在每次迭代时绘制随机的x和y坐标值。

import randomx = []
y = []
colors = []
fig = plt.figure(figsize=(7, 5))def animation_func(i):x.append(random.randint(0, 100))y.append(random.randint(0, 100))colors.append(np.random.rand(1))area = random.randint(0, 30) * random.randint(0, 30)plt.xlim(0, 100)plt.ylim(0, 100)plt.scatter(x, y, c=colors, s=area, alpha=0.5)animation = FuncAnimation(fig, animation_func,interval=100)
plt.show()

输出:

在这里插入图片描述

🛹 条形图追赶的水平移动:

在这个例子中,我们使用城市数据集中最高人口的城市创建了一个条形图竞赛动画。每个城市都有自己的条形图,而动画则会在1990年到2018年之间迭代。数据集可以从这里下载。

import pandasas pd
import matplotlib.ticker as ticker
from matplotlib.animation import FuncAnimationplt.rcParams['font.sans-serif'] = ['Microsoft YaHei']
df = pd.read_csv('city_populations.csv', usecols=['name', 'group', 'year', 'value'])colors = dict(zip(['India', 'Europe', 'Asia', 'Latin America', 'Middle East', 'North America', 'Africa'],['#adb0ff', '#ffb3ff', '#90d595', '#e48381', '#aafbff', '#f7bb5f', '#eafb50']))group_lk = df.set_index('name')['group'].to_dict()def draw_barchart(year):dff = df[df['year'].eq(year)].sort_values(by='value', ascending=True).tail(10)ax.clear()ax.barh(dff['name'], dff['value'], color=[colors[group_lk[x]] for x in dff['name']])dx = dff['value'].max() / 200for i, (value, name) in enumerate(zip(dff['value'], dff['name'])):ax.text(value-dx, i, name, size=14, weight=600, ha='right', va='bottom')ax.text(value-dx, i-.25, group_lk[name], size=10, color='#444444', ha='right', va='baseline')ax.text(value+dx, i, f'{value:,.0f}', size=14, ha='left', va='center')ax.text(1, 0.4, year, transform=ax.transAxes, color='#777777', size=46, ha='right', weight=800)ax.text(0, 1.06, 'Population (thousands)', transform=ax.transAxes, size=12, color='#777777')ax.xaxis.set_major_formatter(ticker.StrMethodFormatter('{x:,.0f}'))ax.xaxis.set_ticks_position('top')ax.tick_params(axis='x', colors='#777777', labelsize=12)ax.set_yticks([])ax.margins(0, 0.01)ax.grid(which='major', axis='x', linestyle='-')ax.set_axisbelow(True)ax.text(0, 1.12, '从 1500 年到 2018 年世界上人口最多的城市',transform=ax.transAxes, size=24, weight=600, ha='left')ax.text(1, 0, 'by haiyong.site | 海拥', transform=ax.transAxes, ha='right', color='#777777',bbox=dict(facecolor='white', alpha=0.8, edgecolor='white'))plt.box(False)plt.show()fig, ax = plt.subplots(figsize=(15, 8))
animator = FuncAnimation(fig, draw_barchart, frames=range(1990, 2019))
plt.show()

输出:

在这里插入图片描述

🛬 wuhu!起飞!

如果您从这篇文章中学到了新知识并喜欢它,请收藏并与您的朋友分享。最后,请不要忘记给予❤或📑支持。

这篇关于Python Matplotlib 动画教程:提高可视化吸引力的强大工具【第24篇—python:Matplotlib】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/607050

相关文章

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

Python Jupyter Notebook导包报错问题及解决

《PythonJupyterNotebook导包报错问题及解决》在conda环境中安装包后,JupyterNotebook导入时出现ImportError,可能是由于包版本不对应或版本太高,解决方... 目录问题解决方法重新安装Jupyter NoteBook 更改Kernel总结问题在conda上安装了

Python如何计算两个不同类型列表的相似度

《Python如何计算两个不同类型列表的相似度》在编程中,经常需要比较两个列表的相似度,尤其是当这两个列表包含不同类型的元素时,下面小编就来讲讲如何使用Python计算两个不同类型列表的相似度吧... 目录摘要引言数字类型相似度欧几里得距离曼哈顿距离字符串类型相似度Levenshtein距离Jaccard相

Python安装时常见报错以及解决方案

《Python安装时常见报错以及解决方案》:本文主要介绍在安装Python、配置环境变量、使用pip以及运行Python脚本时常见的错误及其解决方案,文中介绍的非常详细,需要的朋友可以参考下... 目录一、安装 python 时常见报错及解决方案(一)安装包下载失败(二)权限不足二、配置环境变量时常见报错及

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(

Python itertools中accumulate函数用法及使用运用详细讲解

《Pythonitertools中accumulate函数用法及使用运用详细讲解》:本文主要介绍Python的itertools库中的accumulate函数,该函数可以计算累积和或通过指定函数... 目录1.1前言:1.2定义:1.3衍生用法:1.3Leetcode的实际运用:总结 1.1前言:本文将详

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操