Python Matplotlib 动画教程:提高可视化吸引力的强大工具【第24篇—python:Matplotlib】

本文主要是介绍Python Matplotlib 动画教程:提高可视化吸引力的强大工具【第24篇—python:Matplotlib】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 🍖 方法一:使用pause()函数
    • 🚀 方法二:使用FuncAnimation()函数
      • 🥋 线性图动画:
      • 🎻 Python中的条形图追赶动画
      • 🌌 Python中的散点图动画:
      • 🛹 条形图追赶的水平移动:
    • 🛬 wuhu!起飞!

动画是提高可视化吸引力和用户吸引度的优秀手段。它能够以有意义的方式展示数据可视化。Python提供了强大的库,使我们能够轻松创建动画可视化。Matplotlib是一个广受欢迎的数据可视化库,通常用于绘制数据图表以及创建基于内置函数的动画。

使用Matplotlib创建动画有两种主要方法:

  • 使用pause()函数
  • 使用FuncAnimation()函数

🍖 方法一:使用pause()函数

在这种方法中,我们使用matplotlib库的pyplot模块中的pause()函数来实现暂停。该函数在程序执行过程中会暂停指定的时间间隔,使动画能够逐帧展示。下面是一个示例,演示了如何使用Matplotlib创建一个简单的线性图,并通过pause()函数设置适当的时间间隔展示动画:

from matplotlib import pyplot as pltx = []
y = []for i in range(100):x.append(i)y.append(i)plt.xlim(0, 100)plt.ylim(0, 100)plt.plot(x, y, color='green')plt.pause(0.01)plt.show()

输出:

在这里插入图片描述

同样,pause()函数也可以用于在各种图形中创建动画。

🚀 方法二:使用FuncAnimation()函数

FuncAnimation()函数不会自行创建动画,而是从我们传递的一系列图形中生成动画。其语法如下:

from matplotlib.animation import FuncAnimationanimation = FuncAnimation(figure, animation_function, frames=None, init_func=None, fargs=None, save_count=None, cache_frame_data=True, **kwargs)

现在,我们可以使用FuncAnimation函数创建多种类型的动画。以下是几个示例:

🥋 线性图动画:

在这个例子中,我们创建了一个简单的线性图,展示了线条的动画效果。通过FuncAnimation,我们可以定义动画的具体表现形式,然后将其传递给FuncAnimation。

from matplotlib.animation import FuncAnimation
import numpy as npx = []
y = []
figure, ax = plt.subplots()ax.set_xlim(0, 100)
ax.set_ylim(0, 12)line, = ax.plot(0, 0)def animation_function(i):x.append(i * 15)y.append(i)line.set_xdata(x)line.set_ydata(y)return line,animation = FuncAnimation(figure,func=animation_function,frames=np.arange(0, 10, 0.1),interval=10)
plt.show()

输出:

在这里插入图片描述

🎻 Python中的条形图追赶动画

在这个例子中,我们展示了一个条形图动画,每个条形图都有自己的动画效果。

import numpy as npplt.rcParams['font.sans-serif'] = ['Microsoft YaHei']
fig = plt.figure(figsize=(7, 5))
axes = fig.add_subplot(1, 1, 1)
axes.set_ylim(0, 300)
palette = ['blue', 'red', 'green', 'darkorange', 'maroon', 'black']y1, y2, y3, y4, y5, y6 = [], [], [], [], [], []def animation_function(i):y1 = iy2 = 6 * iy3 = 3 * iy4 = 2 * iy5 = 5 * iy6 = 3 * iplt.xlabel("国家")plt.ylabel("国家GDP")plt.bar(["印度", "中国", "德国", "美国", "加拿大", "英国"],[y1, y2, y3, y4, y5, y6],color=palette)plt.title("条形图动画")animation = FuncAnimation(fig, animation_function,interval=50)
plt.show()

输出:

在这里插入图片描述

🌌 Python中的散点图动画:

在这个例子中,我们使用随机函数在Python中创建了一个动画散点图。通过迭代animation_func,在每次迭代时绘制随机的x和y坐标值。

import randomx = []
y = []
colors = []
fig = plt.figure(figsize=(7, 5))def animation_func(i):x.append(random.randint(0, 100))y.append(random.randint(0, 100))colors.append(np.random.rand(1))area = random.randint(0, 30) * random.randint(0, 30)plt.xlim(0, 100)plt.ylim(0, 100)plt.scatter(x, y, c=colors, s=area, alpha=0.5)animation = FuncAnimation(fig, animation_func,interval=100)
plt.show()

输出:

在这里插入图片描述

🛹 条形图追赶的水平移动:

在这个例子中,我们使用城市数据集中最高人口的城市创建了一个条形图竞赛动画。每个城市都有自己的条形图,而动画则会在1990年到2018年之间迭代。数据集可以从这里下载。

import pandasas pd
import matplotlib.ticker as ticker
from matplotlib.animation import FuncAnimationplt.rcParams['font.sans-serif'] = ['Microsoft YaHei']
df = pd.read_csv('city_populations.csv', usecols=['name', 'group', 'year', 'value'])colors = dict(zip(['India', 'Europe', 'Asia', 'Latin America', 'Middle East', 'North America', 'Africa'],['#adb0ff', '#ffb3ff', '#90d595', '#e48381', '#aafbff', '#f7bb5f', '#eafb50']))group_lk = df.set_index('name')['group'].to_dict()def draw_barchart(year):dff = df[df['year'].eq(year)].sort_values(by='value', ascending=True).tail(10)ax.clear()ax.barh(dff['name'], dff['value'], color=[colors[group_lk[x]] for x in dff['name']])dx = dff['value'].max() / 200for i, (value, name) in enumerate(zip(dff['value'], dff['name'])):ax.text(value-dx, i, name, size=14, weight=600, ha='right', va='bottom')ax.text(value-dx, i-.25, group_lk[name], size=10, color='#444444', ha='right', va='baseline')ax.text(value+dx, i, f'{value:,.0f}', size=14, ha='left', va='center')ax.text(1, 0.4, year, transform=ax.transAxes, color='#777777', size=46, ha='right', weight=800)ax.text(0, 1.06, 'Population (thousands)', transform=ax.transAxes, size=12, color='#777777')ax.xaxis.set_major_formatter(ticker.StrMethodFormatter('{x:,.0f}'))ax.xaxis.set_ticks_position('top')ax.tick_params(axis='x', colors='#777777', labelsize=12)ax.set_yticks([])ax.margins(0, 0.01)ax.grid(which='major', axis='x', linestyle='-')ax.set_axisbelow(True)ax.text(0, 1.12, '从 1500 年到 2018 年世界上人口最多的城市',transform=ax.transAxes, size=24, weight=600, ha='left')ax.text(1, 0, 'by haiyong.site | 海拥', transform=ax.transAxes, ha='right', color='#777777',bbox=dict(facecolor='white', alpha=0.8, edgecolor='white'))plt.box(False)plt.show()fig, ax = plt.subplots(figsize=(15, 8))
animator = FuncAnimation(fig, draw_barchart, frames=range(1990, 2019))
plt.show()

输出:

在这里插入图片描述

🛬 wuhu!起飞!

如果您从这篇文章中学到了新知识并喜欢它,请收藏并与您的朋友分享。最后,请不要忘记给予❤或📑支持。

这篇关于Python Matplotlib 动画教程:提高可视化吸引力的强大工具【第24篇—python:Matplotlib】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/607050

相关文章

Python基于wxPython和FFmpeg开发一个视频标签工具

《Python基于wxPython和FFmpeg开发一个视频标签工具》在当今数字媒体时代,视频内容的管理和标记变得越来越重要,无论是研究人员需要对实验视频进行时间点标记,还是个人用户希望对家庭视频进行... 目录引言1. 应用概述2. 技术栈分析2.1 核心库和模块2.2 wxpython作为GUI选择的优

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python+PyQt5实现多屏幕协同播放功能

《Python+PyQt5实现多屏幕协同播放功能》在现代会议展示、数字广告、展览展示等场景中,多屏幕协同播放已成为刚需,下面我们就来看看如何利用Python和PyQt5开发一套功能强大的跨屏播控系统吧... 目录一、项目概述:突破传统播放限制二、核心技术解析2.1 多屏管理机制2.2 播放引擎设计2.3 专

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

使用Java实现通用树形结构构建工具类

《使用Java实现通用树形结构构建工具类》这篇文章主要为大家详细介绍了如何使用Java实现通用树形结构构建工具类,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录完整代码一、设计思想与核心功能二、核心实现原理1. 数据结构准备阶段2. 循环依赖检测算法3. 树形结构构建4. 搜索子

在C#中调用Python代码的两种实现方式

《在C#中调用Python代码的两种实现方式》:本文主要介绍在C#中调用Python代码的两种实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#调用python代码的方式1. 使用 Python.NET2. 使用外部进程调用 Python 脚本总结C#调