【Databend】分组集:教你如何快速分组汇总

2024-01-14 16:20
文章标签 快速 分组 汇总 databend

本文主要是介绍【Databend】分组集:教你如何快速分组汇总,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 分组集定义和数据准备
    • group by grouping sets
    • group by rollup
    • group by cube
    • 总结

分组集定义和数据准备

分组集是多个分组的并集,用于在一个查询中,按照不同的分组列对集合进行聚合运算,等价于对单个分组使用"union all",计算多个结果集的并集。

Databend 常见的分组集有三种 grouping sets 、rollup 、cube 。

数据准备

drop table if exists sales_data;
create table if not exists sales_data (region varchar(255),product varchar(255),sales_amount int
);
insert into sales_data (region, product, sales_amount) values('North', 'WidgetA', 200),('North', 'WidgetB', 300),('South', 'WidgetA', 400),('South', 'WidgetB', 100),('West', 'WidgetA', 300),('West', 'WidgetB', 200);

group by grouping sets

group by grouping sets 是 group by 子句的强大扩展,允许在单个语句中计算多个 group by子句,组集是一组维度列。效果等同于同一结果集中两个或多个 group by 操作的 union all:

  • group by grouping sets((a))等同于单分组集操作 group by a。
  • group by grouping sets((a),(a,b))等同于 group by a union all group by a,b。

基础语法:

select ...
from ...
[ ... ]
group by grouping sets ( groupset [ , groupset [ , ... ] ] )
[ ... ]
-- groupset ::= { <column_alias> | <position> | <expr> }

其中,column_alias 表示列的别名,position 表示 select 中列的位置,expr 表示当前范围内表上的任何表达式。

根据准备的数据,需求是统计区域销量和产品销量。

-- 方法一:使用 group by grouping sets 语法
select region, product, sum(sales_amount) as total_sales
from sales_data
group by grouping sets(region, product)
order by region, product;
-- 方法二:使用 union all
select region,null as product, sum(sales_amount) as total_sales
from sales_data
group by region
union all 
select null as region, product, sum(sales_amount) as total_sales
from sales_data
group by product;

在这里插入图片描述
根据准备的数据,需求是在原数据的基础上,统计区域销量和产品销量。

select region, product, sum(sales_amount) as total_sales
from sales_data
group by grouping sets(region, product,(region, product))
order by region, product;

在这里插入图片描述

group by rollup

group by rollup 子句会在分组的基础上产生小计行以及总计行,语法如下:

select ...
from ...
[ ... ]
group by rollup ( grouprollup [ , grouprollup [ , ... ] ] )
[ ... ]
-- grouprollup ::= { <column_alias> | <position> | <expr> }

其中,column_alias 表示列的别名,position 表示 select 中列的位置,expr 表示当前范围内表上的任何表达式。

根据准备的数据,需求是在原数据的基础上,统计区域下产品销量小计和总计数据。

-- 方法一:使用 group by rollup 语法
select region, product, sum(sales_amount) as total_sales
from sales_data
group by rollup(region, product)
order by region, product;
-- 方法二:union all
select region, product, sum(sales_amount) as total_sales
from sales_data
group by region,product
union all
select region,null as product, sum(sales_amount) as total_sales
from sales_data
group by region
union all 
select null as region, null as product, sum(sales_amount) as total_sales
from sales_data
order by region, product;

在这里插入图片描述

这种汇总方式在分析看板里经常看到,比如 Power BI 和 Tableau 中做表格时,可以选择小计和总计。可以看到使用 group by rollup 子句能快速实现汇总,代码也简洁。

group by cube

group by cube 子句类似 group by rollup 子句,除了生成 group by rollup 子句的所有行外,还会多一些维度,对所有列交叉分组汇总。

select ...
from ...
[ ... ]
group by cube ( groupcube [ , groupcube [ , ... ] ] )
[ ... ]
-- groupcube ::= { <column_alias> | <position> | <expr> }

其中,column_alias 表示列的别名,position 表示 select 中列的位置,expr 表示当前范围内表上的任何表达式。

根据准备的数据,需求是在原数据基础上分析所有可能情况的销售汇总。

-- 方法一:使用 group by cube 语法
select region, product, sum(sales_amount) as total_sales
from sales_data
group by cube(region, product)
order by region, product;
-- 方法二:使用 group by grouping sets 子句和 union all 结合
select region, product, sum(sales_amount) as total_sales
from sales_data
group by grouping sets(region, product,(region, product))
union all
select null as region, null as product, sum(sales_amount) as total_sales
from sales_data
order by region, product;

在这里插入图片描述

总结

Databend 中 grouping sets、rollup、cube 都是对 group by 的扩展,相对于 union all 来看,代码较简洁,效率也高,可以试着在实际工作中多用用,如果不支持或者理不清,使用 union all 实现的效果也是一样的。

参考资料:

  • Databend Group Bys:https://docs.databend.com/guides/query/groupby/

这篇关于【Databend】分组集:教你如何快速分组汇总的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/605781

相关文章

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

springboot security快速使用示例详解

《springbootsecurity快速使用示例详解》:本文主要介绍springbootsecurity快速使用示例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝... 目录创www.chinasem.cn建spring boot项目生成脚手架配置依赖接口示例代码项目结构启用s

C++快速排序超详细讲解

《C++快速排序超详细讲解》快速排序是一种高效的排序算法,通过分治法将数组划分为两部分,递归排序,直到整个数组有序,通过代码解析和示例,详细解释了快速排序的工作原理和实现过程,需要的朋友可以参考下... 目录一、快速排序原理二、快速排序标准代码三、代码解析四、使用while循环的快速排序1.代码代码1.由快

Win32下C++实现快速获取硬盘分区信息

《Win32下C++实现快速获取硬盘分区信息》这篇文章主要为大家详细介绍了Win32下C++如何实现快速获取硬盘分区信息,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 实现代码CDiskDriveUtils.h#pragma once #include <wtypesbase

Spring AI与DeepSeek实战一之快速打造智能对话应用

《SpringAI与DeepSeek实战一之快速打造智能对话应用》本文详细介绍了如何通过SpringAI框架集成DeepSeek大模型,实现普通对话和流式对话功能,步骤包括申请API-KEY、项目搭... 目录一、概述二、申请DeepSeek的API-KEY三、项目搭建3.1. 开发环境要求3.2. mav

Python如何快速下载依赖

《Python如何快速下载依赖》本文介绍了四种在Python中快速下载依赖的方法,包括使用国内镜像源、开启pip并发下载功能、使用pipreqs批量下载项目依赖以及使用conda管理依赖,通过这些方法... 目录python快速下载依赖1. 使用国内镜像源临时使用镜像源永久配置镜像源2. 使用 pip 的并

SpringBoot快速接入OpenAI大模型的方法(JDK8)

《SpringBoot快速接入OpenAI大模型的方法(JDK8)》本文介绍了如何使用AI4J快速接入OpenAI大模型,并展示了如何实现流式与非流式的输出,以及对函数调用的使用,AI4J支持JDK8... 目录使用AI4J快速接入OpenAI大模型介绍AI4J-github快速使用创建SpringBoot

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

使用Python在Excel中创建和取消数据分组

《使用Python在Excel中创建和取消数据分组》Excel中的分组是一种通过添加层级结构将相邻行或列组织在一起的功能,当分组完成后,用户可以通过折叠或展开数据组来简化数据视图,这篇博客将介绍如何使... 目录引言使用工具python在Excel中创建行和列分组Python在Excel中创建嵌套分组Pyt

Oracle数据库使用 listagg去重删除重复数据的方法汇总

《Oracle数据库使用listagg去重删除重复数据的方法汇总》文章介绍了在Oracle数据库中使用LISTAGG和XMLAGG函数进行字符串聚合并去重的方法,包括去重聚合、使用XML解析和CLO... 目录案例表第一种:使用wm_concat() + distinct去重聚合第二种:使用listagg,