《ORANGE’S:一个操作系统的实现》读书笔记(三十)文件系统(五)

2024-01-14 13:28

本文主要是介绍《ORANGE’S:一个操作系统的实现》读书笔记(三十)文件系统(五),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

上一篇文章记录了如何进行文件的创建,那么本篇文章要记录的事情就是如何在创建的文件中进行读写操作,毕竟文件是要操作才有意义的。

读写文件

由于我们使用“一次分配,终身使用”的扇区分配策略,所以文件读写变得非常容易,我们先来添加处理READ和WRITE消息的代码:

代码 fs/main.c,文件系统处理READ和WRITE消息。

/*** <Ring 1> The main loop of TASK FS.*/
PUBLIC void task_fs()
{
...switch (fs_msg.type) {case OPEN:fs_msg.FD = do_open();break;case CLOSE:fs_msg.RETVAL = do_close();break;case READ:case WRITE:fs_msg.CNT = do_rdwt();break;default:dump_msg("FS::unknown message:", &fs_msg);assert(0);break;
...
}

读写两种消息由同一个函数do_rdwt()来处理,代码如下所示。

代码 fs/read_write.c,do_rdwt,这是新建的文件。

/*** Read/Write file and return byte count read/written.* * Sector map is not needed to update, since the sectors for the file have been* allocated and the bits are set when the file was created.* * @return How many bytes have been read/written.*/
PUBLIC int do_rdwt()
{int fd = fs_msg.FD;         /*< file descriptor. */void * buf = fs_msg.BUF;    /*< r/w buffer */int len = fs_msg.CNT;       /*< r/w bytes */int src = fs_msg.source;    /* caller proc nr. */assert((pcaller->filp[fd] >= &f_desc_table[0]) &&(pcaller->filp[fd] < &f_desc_table[NR_FILE_DESC]));if (!(pcaller->filp[fd]->fd_mode & O_RDWR)) {return -1;}int pos = pcaller->filp[fd]->fd_pos;struct inode * pin = pcaller->filp[fd]->fd_inode;assert(pin >= &inode_table[0] && pin < &inode_table[NR_INODE]);int imode = pin->i_mode & I_TYPE_MASK;if (imode == I_CHAR_SPECIAL) {int t = fs_msg.type == READ ? DEV_READ : DEV_WRITE;fs_msg.type = t;int dev = pin->i_start_sect;assert(MAJOR(dev) == 4);fs_msg.DEVICE = MINOR(dev);fs_msg.BUF = buf;fs_msg.CNT = len;fs_msg.PROC_NR = src;assert(dd_map[MAJOR(dev)].driver_nr != INVALID_DRIVER);send_recv(BOTH, dd_map[MAJOR(dev)].driver_nr, &fs_msg);assert(fs_msg.CNT == len);return fs_msg.CNT;} else {assert(pin->i_mode == I_REGULAR || pin->i_mode == I_DIRECTORY);assert((fs_msg.type == READ) || (fs_msg.type == WRITE));int pos_end;if (fs_msg.type == READ) {pos_end = min(pos + len, pin->i_size);} else {pos_end = min(pos + len, pin->i_nr_sects * SECTOR_SIZE);}int off = pos % SECTOR_SIZE;int rw_sect_min = pin->i_start_sect + (pos >> SECTOR_SIZE_SHIFT);int rw_sect_max = pin->i_start_sect + (pos_end >> SECTOR_SIZE_SHIFT);int chunk = min(rw_sect_max - rw_sect_min + 1, FSBUF_SIZE >> SECTOR_SIZE_SHIFT);int bytes_rw = 0;int bytes_left = len;int i;for (i = rw_sect_min; i <= rw_sect_max; i += chunk) {/* read/write this amount of bytes every time */int bytes = min(bytes_left, chunk * SECTOR_SIZE - off);rw_sector(DEV_READ, pin->i_dev, i * SECTOR_SIZE, chunk * SECTOR_SIZE, TASK_FS, fsbuf);if (fs_msg.type == READ) {phys_copy((void*)va2la(src, buf + bytes_rw),(void*)va2la(TASK_FS, fsbuf + off),bytes);} else { /* WRITE */phys_copy((void*)va2la(TASK_FS, fsbuf + off),(void*)va2la(src, buf + bytes_rw),bytes);rw_sector(DEV_WRITE, pin->i_dev, i * SECTOR_SIZE, chunk * SECTOR_SIZE, TASK_FS, fsbuf);}off = 0;bytes_rw += bytes;pcaller->filp[fd]->fd_pos += bytes;bytes_left -= bytes;}if (pcaller->filp[fd]->fd_pos > pin->i_size) {/* update inode::size */pin->i_size = pcaller->filp[fd]->fd_pos;/* write the updated i-node back to disk*/sync_inode(pin);}return bytes_rw;}
}

在读写的过程中,我们仍然照顾到了字符设备特殊文件。跟前面一样,我们仍然是把它扔给相应的驱动程序——虽然驱动程序并未准备好处理,但发送一个消息只是举手之劳,我们不妨先把它添上。

读写普通文件时,file_desc结构体的成员悉数到场。首先是对fd_mode进行简单的判断,这其实是判断open()函数调用时是否传入了正确的flag参数,因为fd_mode是从那里得来的。我们对flags的可选值进行了简化,它的可选值只有两个:O_CREAT和O_RDWR,要想读写文件,调用open()时需要加上O_RDWR。

fd_pos的用途在于记录读写到文件的哪个位置,类似于一个书签,在文件刚打开时它被置为0。

fd_inode所指向的便是被操作文件的i-node了,我们通过它获得文件的开始扇区、文件类型,以及文件大小等信息。

真正的读写过程从第52行开始。变量pos表示开始读写的位置,pos_end表示结束读写的位置,读操作时pos_end不能越过文件已有的大小,写操作时pos_end不能越过为文件所分配的最大空间。通过pos和pos_end,我们可以计算出读/写操作所涉及的扇区边界,这里用rw_sect_min和rw_sect_max表示。计算时用右移操作代替除法运算,右移SECTOR_SIZE_SHIFT位相当于被SECTOR_SIZE除。

对扇区的读写以chunk为单位,最大不能超过为fsbuf分配的空间。

需要注意,不仅读操作,写操作也需要先将目标扇区读出,因为读写都是以扇区为单位的,而写操作可以在文件的任意位置进行,所以以扇区为单位的上下文需要先行读出。写操作的另一特殊之处在于它可能改变文件大小,所以返回之前要检查这一点,如果文件大小被改变,则需要更新i-node。

现在FS能处理READ和WRITE消息了,我们马上写两个函数:read()和write(),以便用户进程使用,具体如下代码所示。

代码 lib/read.c,read(),这是新建的文件。

/*** Read from a file descriptor.* * @param fd    File descriptor.* @param buf   Buffer to accept the bytes read.* @param count How many bytes to read.* * @return On success, the number of bytes read are returned.*         On error, -1 is returned.*/
PUBLIC int read(int fd, void *buf, int count)
{MESSAGE msg;msg.type = READ;msg.FD = fd;msg.BUF = buf;msg.CNT = count;send_recv(BOTH, TASK_FS, &msg);return msg.CNT;
}

代码 lib/write.c,write(),这是新建的文件。

/*** Write to a file descriptor.* * @param fd    File descriptor.* @param buf   Buffer including the bytes to write.* @param count How many bytes to write.* * @return  On success, the number of bytes written are returned.*          On error, -1 is returned.*/
PUBLIC int write(int fd, const void *buf, int count)
{MESSAGE msg;msg.type = WRITE;msg.FD = fd;msg.BUF = (void*)buf;msg.CNT = count;send_recv(BOTH, TASK_FS, &msg);return msg.CNT;
}

测试文件读写

好了,现在可以读写文件了,我们马上来测试一下,修改TestA,代码如下所示。

代码 kernel/main.c,读写文件。

void TestA()
{int fd;int n;const char filename[] = "blah";const char bufw[] = "abcde";const int rd_bytes = 3;char bufr[rd_bytes];assert(rd_bytes <= strlen(bufw));/* create */fd = open(filename, O_CREAT | O_RDWR);assert(fd != -1);printf("File created. fd: %d\n", fd);/* write */n = write(fd, bufw, strlen(bufw));assert(n == strlen(bufw));/* close */close(fd);/* open */fd = open(filename, O_RDWR);assert(fd != -1);printf("File opened. fd: %d\n", fd);/* read */n = read(fd, bufr, rd_bytes);assert(n == rd_bytes);bufr[n] = 0;printf("%d bytes read: %s\n", n, bufr);/* close */close(fd);spin("TestA");
}

好了,现在可以make并运行查看结果了,由于我们新添加了几个C文件,不要忘记更改Makefile。运行结果如下图所示。

从运行结果看,文件读操作成功了,“abc”三个字符被读出,为保险起见,我们还是深入磁盘映像,看一下如今的“/blah”文件变成什么样了:

理所应当地,inode-map、sector-map以及根目录区没有任何改变,只是“/blah”的i-node变了,i_size变成了5,这是正确的,因为我们写入了5个字节。

接下来还要看一看“/blah”实际占用的扇区中数据的情况。从i-node中可知,文件的开始扇区号是909h,将它与分区的开始扇区号6000h相加,得到“/blah”占用的首扇区的LBA:6909h,将它乘以200h,得到D21200h,这便是“/blah”数据扇区的字节偏移了,让我们来看看里面的内容:

看到了“abcde”,写入操作成功了。

虽然目前的测试还远远不够充分,但是我们有理由庆贺一番了,因为有了创建和读写功能,我们的文件系统就算是具备雏形了。
 

欢迎关注我的公众号

这篇关于《ORANGE’S:一个操作系统的实现》读书笔记(三十)文件系统(五)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/605303

相关文章

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Java实现检查多个时间段是否有重合

《Java实现检查多个时间段是否有重合》这篇文章主要为大家详细介绍了如何使用Java实现检查多个时间段是否有重合,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录流程概述步骤详解China编程步骤1:定义时间段类步骤2:添加时间段步骤3:检查时间段是否有重合步骤4:输出结果示例代码结语作

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Java覆盖第三方jar包中的某一个类的实现方法

《Java覆盖第三方jar包中的某一个类的实现方法》在我们日常的开发中,经常需要使用第三方的jar包,有时候我们会发现第三方的jar包中的某一个类有问题,或者我们需要定制化修改其中的逻辑,那么应该如何... 目录一、需求描述二、示例描述三、操作步骤四、验证结果五、实现原理一、需求描述需求描述如下:需要在

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import