利用Monte Carlo进行数值积分(二)

2024-01-14 09:36

本文主要是介绍利用Monte Carlo进行数值积分(二),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

进步空间很大的算法版本

话说去年6月的一个周六,我很无聊地发了一个帖子,写了一个自己感觉有点无聊的帖子。


Matlab多重积分的两种实现【从六重积分到一百重积分】icon-default.png?t=N7T8https://withstand.blog.csdn.net/article/details/127564478

这个帖子居然成了我这种懒人随性瞎写的博文中阅读量、收藏量和评论量最多的一个。

很多人对我不写说明,不写例子提出了意见,开头我写的那个代码里面还有一个小问题。

时隔7个月之后,我抽出一点时间来看这个算法,发现问题简直是大大的。

function ret = integral6mc(fun, lb, ub, N)% fun是被积分的函数% lb和ub是积分变量的范围,每个都是六维数组% N MC采样的数目,一般取个几千、几万试一下差不多就行V = prod(abs(ub-lb)); % 计算超立方体的体积,向量化计算每一个维度的长度(绝对值),求所有维度的乘积n = length(lb); % 维数sample = (ub-lb) .* rand(N, n) + repmat(lb,N,1); %产生一个Nxn的随机数组,然后转换到lb~ub的范围,repmat函数是复制矩阵,把行向量复制程Nxnsample_arguments = num2cell(sample, 1);% 把上面的Nxn矩阵换成按列排列的cell(n个元素)results = cell2mat(arrayfun(fun, sample_arguments{:}, 'UniformOutput', 0));%调用被积函数,被积函数的参数有n个,把cell展开({:}操作),这里arrayfun得到的是cell,再合并成mat,就是N个结果的向量ret = sum(results) * V / N; % 这是MC的核心算法,乘以体积除以样本数

丑陋的'UniformOutput'以及为什么

首先,这里很无聊的搞了cell2mat,以及'UniformOutput', 0的参数,都是因为没仔细考虑,瞎写的。

这里的核心问题是什么呢?是arrayfun这个函数。

这个函数和并行比如parfor这些没关系,是一个单线程的函数,就是把第一个参数(一个函数句柄)逐次应用到后续参数的每一个对应的元素上去。

这里其实有一个小小的问题,是一位强迫我写一个例子的网友提出来的,很对。

f = @(x, y) x * y

这个函数有两个参数,我们可以看到,如果x和y都是标量(一个数字),这个函数没啥问题。如果x,y是两个size一样的向量或者矩阵或者高维矩阵,那么他计算的就不是简单的乘法。只所以我前面调用arrayfun的过程中,需要设置输出可能不一致,就是因为我的目标函数没有写按元操作。

在采用arrayfun的时候,我们应该给出如此的约束, 目标函数是一个按元操作的函数,也就是,上面的函数应该写成:

f = @(x, y) x .* y

这个问题在我原来用的matlab版本中貌似是个问题,但是今天我更新了matlab,看起来没啥问题了,那种写法都是可以的,最终的计算时间也是相当的,看起来就是arrayfun的内部没有做任何向量化的计算。这个实际上很奇怪,我感觉应该是优化到采用向量化的cpu指令来计算会比较合理……

更好的版本

在这个条件下,我们的mc函数就能够写成:

function ret = mci(fun, lb, ub, N)% fun是被积分的函数% lb和ub是积分变量的范围,每个都是六维数组% N MC采样的数目,一般取个几千、几万试一下差不多就行V = prod(abs(ub-lb)); % 计算超立方体的体积,向量化计算每一个维度的长度(绝对值),求所有维度的乘积n = length(lb); % 维数sample = (ub-lb) .* rand(N, n) + repmat(lb,N,1); %产生一个Nxn的随机数组,然后转换到lb~ub的范围,repmat函数是复制矩阵,把行向量复制程Nxnsample_arguments = num2cell(sample, 1);% 把上面的Nxn矩阵换成按列排列的cell(n个元素)results = arrayfun(fun, sample_arguments{:});ret = sum(results) * V / N; % 这是MC的核心算法,乘以体积除以样本数

这里依然有同样的问题,就是num2cell,这个部分利用matlab把函数的多个参数当成cell的调用惯例,也可以写成:

function ret = mci(fun, lb, ub, N)% fun是被积分的函数% lb和ub是积分变量的范围,每个都是六维数组% N MC采样的数目,一般取个几千、几万试一下差不多就行V = prod(abs(ub-lb)); % 计算超立方体的体积,向量化计算每一个维度的长度(绝对值),求所有维度的乘积n = length(lb); % 维数sample = (ub-lb) .* rand(N, n) + repmat(lb,N,1); %产生一个Nxn的随机数组,然后转换到lb~ub的范围,repmat函数是复制矩阵,把行向量复制程Nxnsample_arguments = cell(n, 1);for i = 1:nsample_arguments{i} = sample(:,i);endresults = arrayfun(fun, sample_arguments{:});ret = sum(results) * V / N; % 这是MC的核心算法,乘以体积除以样本数

这两个函数是一毛一样的,用for循环和用num2cell带来的差别微乎其微。

一点点例子以及profile

一维的无聊例子

先搞一个一点也不excited的例子。

f(x) = x

定积分

\int_a^b f(x) = \left.\frac{1}{2}x^2\right|_a^b

如果a=0, b=1,积分结果为0.5。

f = @(x) x;n = round(logspace(2, 6, 50)); //必须保证是整数results = arrayfun(@(N)mci(f, lb, ub, N), n);figuresemilogx(n, results, 'x');hold onsemilogx([100, 1e6], [0.5, 0.5])xlabel("N");ylabel("\int_0^1 x dx")print -dpng -r300 convergencefigureloglog(n, abs(results-0.5), '+')xlabel("N")ylabel("\sigma")print -dpng -r300 sigma

收敛的结果如图:

误差的loglog图:


 

二维的略微不那么无聊例子

下面还一点点稍微不无聊一点的。

f(x, y) = x y

积分:

\int_a^b\int_c^d f(x, y) dx dy = \left.\frac{1}{2}x^2\right|_a^b \left.\frac{1}{2}y^2\right|_c^d
 

积分代码:

f = @(x,y) x * y;n = round(logspace(2, 6, 50)); //必须保证是整数results = arrayfun(@(N)mci(f, lb, ub, N), n);figuresemilogx(n, results, 'x');hold onsemilogx([100, 1e6], [0.25, 0.25])xlabel("N");ylabel("\int_0^1\int_0^1 x y dx dy")print -dpng -r300 convergencefigureloglog(n, abs(results-0.25), '+')xlabel("N")ylabel("\sigma")print -dpng -r300 sigma

收敛速度:

误差结果:

2维的情况下很快就收敛到3位小数(10000次采样)。

100维的例子

我们弄一个100维的简单函数.

f(x_1, x_2, \ldots, x_{n}) = \sum_{i=1}^{n} x_i^2

[0,1]^n区间积分的真值是n \times 0.33333333\ldots

对应的代码:

function ret = fn(varargin)n = length(varargin);vars = zeros(n, 1);for i=1:nvars(i) = varargin{i};endret = sum(vars .^ 2);

对应的收敛性代码。

N = 100;true_value = N * 1.0 / 3.0;lb = zeros(1, N); %这里必须是1 * N, 而不是N * 1ub = ones(1, N);n = round(logspace(2, 6, 50));results = arrayfun(@(N)mci(@fn, lb, ub, N), n);figuresemilogx(n, results, 'x');hold onsemilogx([100, 1e6], [true_value, true_value])xlabel("N");ylabel("\int f")print -dpng -r300 convergencefigureloglog(n, abs(results-true_value), '+')xlabel("N")ylabel("\sigma")print -dpng -r300 delta

可以看到蒙特卡洛方法有一个很好很好的特性,就是积分函数的维数跟算法复杂度完全没有关系。就算是100维,一样给它弄到三位有效数字的积分结果。

算法的典型时间特性

这个函数中一半的时间都在调用fn函数,这个函数一点也不美……

好吧,看起来100层并没有什么,也不需要那么多考虑。

GPU版本

当然,我还很无聊地写了一个gpu版本,效果简直是碉堡了。

这里就不多说,上个代码就算了。

function ret = mci_gpu(fun, lb, ub, N)% fun是被积分的函数% lb和ub是积分变量的范围,每个都是六维数组% N MC采样的数目,一般取个几千、几万试一下差不多就行V = prod(abs(ub-lb)); % 计算超立方体的体积,向量化计算每一个维度的长度(绝对值),求所有维度的乘积n = length(lb); % 维数sample = (ub-lb) .* rand(N, n, 'gpuArray') + repmat(lb,N,1); %产生一个Nxn的随机数组,然后转换到lb~ub的范围,repmat函数是复制矩阵,把行向量复制程Nxnargs = cell(n, 1);for i = 1:nargs{i} = sample(:,i);endresults = arrayfun(fun, args{:});%调用被积函数ret = gather(sum(results) * V / N); % 这是MC的核心算法,乘以体积除以样本数

调用的方法跟前面那个函数一样,就是有一个问题,在gpu中计算时,不能调用100维的那个函数,因为要使用动态输入参数个数。

gpu版本的唯一不同就是把数组创建在显存中,最终这个计算里面最花时间的就是创建数组,实际的arrayfun的时间基本可以忽略,也是一个挺有意思的事情。最终用gather函数把结果从显存中取出来。

一点都不想参考的参考文献

[1] 张艳. 利用蒙特卡罗方法求解数值积分[J]. 高等数学研究, 2023, 26(1): 44-46+61.

这篇关于利用Monte Carlo进行数值积分(二)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/604716

相关文章

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

Linux使用fdisk进行磁盘的相关操作

《Linux使用fdisk进行磁盘的相关操作》fdisk命令是Linux中用于管理磁盘分区的强大文本实用程序,这篇文章主要为大家详细介绍了如何使用fdisk进行磁盘的相关操作,需要的可以了解下... 目录简介基本语法示例用法列出所有分区查看指定磁盘的区分管理指定的磁盘进入交互式模式创建一个新的分区删除一个存

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

使用Python进行文件读写操作的基本方法

《使用Python进行文件读写操作的基本方法》今天的内容来介绍Python中进行文件读写操作的方法,这在学习Python时是必不可少的技术点,希望可以帮助到正在学习python的小伙伴,以下是Pyth... 目录一、文件读取:二、文件写入:三、文件追加:四、文件读写的二进制模式:五、使用 json 模块读写

使用zabbix进行监控网络设备流量

《使用zabbix进行监控网络设备流量》这篇文章主要为大家详细介绍了如何使用zabbix进行监控网络设备流量,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录安装zabbix配置ENSP环境配置zabbix实行监控交换机测试一台liunx服务器,这里使用的为Ubuntu22.04(

在Pandas中进行数据重命名的方法示例

《在Pandas中进行数据重命名的方法示例》Pandas作为Python中最流行的数据处理库,提供了强大的数据操作功能,其中数据重命名是常见且基础的操作之一,本文将通过简洁明了的讲解和丰富的代码示例,... 目录一、引言二、Pandas rename方法简介三、列名重命名3.1 使用字典进行列名重命名3.编

python安装完成后可以进行的后续步骤和注意事项小结

《python安装完成后可以进行的后续步骤和注意事项小结》本文详细介绍了安装Python3后的后续步骤,包括验证安装、配置环境、安装包、创建和运行脚本,以及使用虚拟环境,还强调了注意事项,如系统更新、... 目录验证安装配置环境(可选)安装python包创建和运行Python脚本虚拟环境(可选)注意事项安装

如何使用celery进行异步处理和定时任务(django)

《如何使用celery进行异步处理和定时任务(django)》文章介绍了Celery的基本概念、安装方法、如何使用Celery进行异步任务处理以及如何设置定时任务,通过Celery,可以在Web应用中... 目录一、celery的作用二、安装celery三、使用celery 异步执行任务四、使用celery

SpringBoot使用minio进行文件管理的流程步骤

《SpringBoot使用minio进行文件管理的流程步骤》MinIO是一个高性能的对象存储系统,兼容AmazonS3API,该软件设计用于处理非结构化数据,如图片、视频、日志文件以及备份数据等,本文... 目录一、拉取minio镜像二、创建配置文件和上传文件的目录三、启动容器四、浏览器登录 minio五、

python-nmap实现python利用nmap进行扫描分析

《python-nmap实现python利用nmap进行扫描分析》Nmap是一个非常用的网络/端口扫描工具,如果想将nmap集成进你的工具里,可以使用python-nmap这个python库,它提供了... 目录前言python-nmap的基本使用PortScanner扫描PortScannerAsync异