如何提高匹配的精确度(多次学习)

2024-01-13 11:44

本文主要是介绍如何提高匹配的精确度(多次学习),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

我们工业自动化中,视觉软件匹配,都是学习一次,比如找到轮廓,旋转360度,也就是有360个轮廓,然后到图像中去找任意角度的目标。

这样的学习并不能一而概括全。

所以,我借鉴ai的方法,通过多次学习,来识别事物。

在我们机器视觉中怎么实现多次学习呢?

我们有360个模板,都是一个模板旋转360度得到的,

同一学习的目标,我们可以在任意角度放置,抠图后,就有很多学习到模板,都是同一事物,我们找到和360个模板的关系,填充进去,替换原来的模板,显然,多次学习的模板更接近本来面目,这是很容易懂的道理。

我们具体实现,示范一下:

第一,先学习一个,旋转360,得到360个模板,作为基础:

第二,我们在红色框中旋转,开始多次学习:第一次学习-9度

第三,第二次学习:失败

第四,第三次学习:-21度

第五,第四次学习:-27度

第六,第五次学习:17度

第七,第六次学习:1度

好,我们学了6次,第一次是基准,我们知道六次的关系,-9度,失败,-21度,-27,17,1

这样,我们可以把基准产生的-9度,-21度,-27,17,1度替换掉,我们随便放个位置,匹配一下,用基准和六次学习的结果分别匹配,然后对比:

多次学习匹配结果序号是:1(-9度),得分:0.435;基准匹配得分 0.48,-12度

看到没有,多次学习匹配的结果hog和基准匹配hog很接近,他们的偏差和=1+0+1+4+3+0+1+1=11

达到我们小于25的要求。

我们只学习了六次,一次还失败了,如果每一度都能学习上,肯定多次学习比基准匹配好,

我们又来一次:

多次学习匹配结果序号是:1(-9度),得分:0.485;基准匹配得分 0.463,-9度

看到没有,都是-9度时,0.485已经大于0.46

这次偏差和=0+1+1+3+1+0+2+1=9

低于上次偏差和11.

这是显而易见的。

如此看来,我们的的得分提升,有新希望,而且使用了近似ai深度学习的手法,多次学习。

我们的速度显然比cnn和ai肯定快的多,而且不用gpu,单单一个cpu就够了,其实我的电脑还是i3三代处理器。

是不是对机器视觉(machine vision)信心大增?

这篇关于如何提高匹配的精确度(多次学习)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/601349

相关文章

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

关于Gateway路由匹配规则解读

《关于Gateway路由匹配规则解读》本文详细介绍了SpringCloudGateway的路由匹配规则,包括基本概念、常用属性、实际应用以及注意事项,路由匹配规则决定了请求如何被转发到目标服务,是Ga... 目录Gateway路由匹配规则一、基本概念二、常用属性三、实际应用四、注意事项总结Gateway路由

如何提高Redis服务器的最大打开文件数限制

《如何提高Redis服务器的最大打开文件数限制》文章讨论了如何提高Redis服务器的最大打开文件数限制,以支持高并发服务,本文给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录如何提高Redis服务器的最大打开文件数限制问题诊断解决步骤1. 修改系统级别的限制2. 为Redis进程特别设置限制

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]