python中collections中的Counter解析

2024-01-13 03:20

本文主要是介绍python中collections中的Counter解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

collections — High-performance container datatypes
在2.4版本中新加入,源代码Lib/collections.py和Lib/_abcoll.py。该模块实现了专用的容器数据类型来替代python的通用内置容器:dict(字典),list(列表), set(集合)和tuple(元组)。

除了具体的容器类,collections模块还提供了abstract_base_classes来测试一个类是否体用了一个特定的接口,例如,这是可哈希的还是一个映射。

Counter

counter工具用于支持便捷和快速地计数,例如

from collections import Counter
cnt = Counter()
for word in ['red', 'blue', 'red', 'green', 'blue', 'blue']:cnt[word] += 1
print cnt

输出为

Counter({'blue': 3, 'red': 2, 'green': 1})

Counter类介绍

class collections.Counter([iterable-or-mapping])

一个Counter是dict子类,用于计数可哈希的对象。这是一个无序的容器,元素被作为字典的key存储,它们的计数作为字典的value存储。Counts允许是任何证书,包括0和负数。Counter和其它语言中的bags或者multisets类似。Counter中的元素来源如下:

>>> c = Counter()                           # a new, empty counter
>>> c = Counter('gallahad')                 # a new counter from an iterable
>>> c = Counter({'red': 4, 'blue': 2})      # a new counter from a mapping
>>> c = Counter(cats=4, dogs=8)             # a new counter from keyword args

Counter对象有一个字典接口除了它们在缺失的items时候返回0而不是产生一个KeyError。设置计数为0并不会从一个counter中删除该元素,使用del来彻底删除。

>>> c = Counter(['eggs', 'ham'])
>>> c['bacon']                              # count of a missing element is zero
0
>>> c['sausage'] = 0                        # counter entry with a zero count
>>> del c['sausage']                        # del actually removes the entry

在2.7版本的python中,Counter额外支持字典中没有的三个功能

实际应用效果如下:

>>> c = Counter(a=4, b=2, c=0, d=-2)
>>> list(c.elements())
['a', 'a', 'a', 'a', 'b', 'b']
>>> Counter('abracadabra').most_common(3)
[('a', 5), ('r', 2), ('b', 2)]
>>> c = Counter(a=4, b=2, c=0, d=-2)
>>> d = Counter(a=1, b=2, c=3, d=4)
>>> c.subtract(d)
>>> c
Counter({'a': 3, 'b': 0, 'c': -3, 'd': -6})

一些字典的常规方法对Counter对象有效,除了两个函数对于Counter的效用有些异常

对Counter有效的常用方法

sum(c.values())                 # total of all counts
c.clear()                       # reset all counts
list(c)                         # list unique elements
set(c)                          # convert to a set
dict(c)                         # convert to a regular dictionary
c.items()                       # convert to a list of (elem, cnt) pairs
Counter(dict(list_of_pairs))    # convert from a list of (elem, cnt) pairs
c.most_common()[:-n-1:-1]       # n least common elements
c += Counter()                  # remove zero and negative counts

此外还为Counter提供了一些运算符来进行Counter对象的组合。加法和减法是对对应元素count的加减,与和或返回相应元素的最小/最大的count。输出的结果中会排除掉count小等于0的元素

>>> c = Counter(a=3, b=1)
>>> d = Counter(a=1, b=2)
>>> c + d                       # add two

这篇关于python中collections中的Counter解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/600079

相关文章

Python办公自动化实战之打造智能邮件发送工具

《Python办公自动化实战之打造智能邮件发送工具》在数字化办公场景中,邮件自动化是提升工作效率的关键技能,本文将演示如何使用Python的smtplib和email库构建一个支持图文混排,多附件,多... 目录前言一、基础配置:搭建邮件发送框架1.1 邮箱服务准备1.2 核心库导入1.3 基础发送函数二、

Python包管理工具pip的升级指南

《Python包管理工具pip的升级指南》本文全面探讨Python包管理工具pip的升级策略,从基础升级方法到高级技巧,涵盖不同操作系统环境下的最佳实践,我们将深入分析pip的工作原理,介绍多种升级方... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python中反转字符串的常见方法小结

《Python中反转字符串的常见方法小结》在Python中,字符串对象没有内置的反转方法,然而,在实际开发中,我们经常会遇到需要反转字符串的场景,比如处理回文字符串、文本加密等,因此,掌握如何在Pyt... 目录python中反转字符串的方法技术背景实现步骤1. 使用切片2. 使用 reversed() 函

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert

使用Docker构建Python Flask程序的详细教程

《使用Docker构建PythonFlask程序的详细教程》在当今的软件开发领域,容器化技术正变得越来越流行,而Docker无疑是其中的佼佼者,本文我们就来聊聊如何使用Docker构建一个简单的Py... 目录引言一、准备工作二、创建 Flask 应用程序三、创建 dockerfile四、构建 Docker

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Python使用pip工具实现包自动更新的多种方法

《Python使用pip工具实现包自动更新的多种方法》本文深入探讨了使用Python的pip工具实现包自动更新的各种方法和技术,我们将从基础概念开始,逐步介绍手动更新方法、自动化脚本编写、结合CI/C... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Conda与Python venv虚拟环境的区别与使用方法详解

《Conda与Pythonvenv虚拟环境的区别与使用方法详解》随着Python社区的成长,虚拟环境的概念和技术也在不断发展,:本文主要介绍Conda与Pythonvenv虚拟环境的区别与使用... 目录前言一、Conda 与 python venv 的核心区别1. Conda 的特点2. Python v

Python使用python-can实现合并BLF文件

《Python使用python-can实现合并BLF文件》python-can库是Python生态中专注于CAN总线通信与数据处理的强大工具,本文将使用python-can为BLF文件合并提供高效灵活... 目录一、python-can 库:CAN 数据处理的利器二、BLF 文件合并核心代码解析1. 基础合