C++内存管理机制(侯捷)笔记4(完结)

2024-01-13 01:28

本文主要是介绍C++内存管理机制(侯捷)笔记4(完结),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

C++内存管理机制(侯捷)

本文是学习笔记,仅供个人学习使用。如有侵权,请联系删除。

参考链接

Youtube: 侯捷-C++内存管理机制

Github课程视频、PPT和源代码: https://github.com/ZachL1/Bilibili-plus

介绍

下面是第四讲和第五讲的笔记。

第四讲:loki库的allocator

第五讲:other issues,主要介绍GNU C++提供的其他分配器的使用

截至2024年1月12日,花费3天时间完成《C++内存管理——从平地到万丈高楼》的学习。

文章目录

  • C++内存管理机制(侯捷)
    • 介绍
    • 45 上中下三个classes分析
    • 46 Class Chunk分析
    • 47 class FixedAllocator分析(上)
    • 48 class FixedAllocator分析(下)
    • 49 Loki::allocator总结
    • 50 GNU C++对allocators的描述
    • 51 VS2013标准分配器&G4.9标准分配器与new_allocator以及G4.9malloc
    • 52 G4.9array_allocator
    • 53 G4.9 debug_allocator
    • 54 bitmap_allocator上
    • 55 bitmap_allocator(下)
    • 后记

45 上中下三个classes分析

loki的allocator

Loki 是 C++ 中一个开源的库,其中包含一组通用的 C++ 组件。在 Loki 库中,有一个称为 Loki::Allocator 的组件,它是一个用于内存分配的工具。

讲这个分配器是为了和GNU C++中的alloc分配器作比较,alloc分配器最后的内存并没有还给操作系统。

Loki allocator的三个类,从低阶到高阶分别为:Chunk, FixedAllocator, SmallObjAllocator。

在这里插入图片描述

Chunk

pData_: unsigned char* // 指针,指向分配的一个chunk
firstAvailableBlock_:unsigned char // 第一个可用区块
blocksAvailable_: unsigned char // 目前还可以供应几个区块

FixedAllocator

chunks_: vector<Chunk> // vector里面放了很多chunk
// 两个指针,指向某两个Chunk
allocChunk_: Chunk* 
deallocChunk_: Chunk*

SmallObjAllocator

pool_: vector<FixedAllocator>  // 里面放了很多FixedAllocator
// 两个指针,指向某两个FixedAllocator
pLastAlloc: FixedAllocator*
pLastDealloc: FixedAllocator*
chunkSize: size_t
maxObjectSize: size_t

46 Class Chunk分析

Loki allocator里面的Chunk

Init函数:new调用malloc创建对象,分配一大块chunk

调用Reset函数,下图中可用的block个数为64,第一个可以的block的编号为0,然后一个for循环,把每个block的第一个字节当作索引index使用(类似于嵌入式指针)

还有Release函数,使用delete[],释放空间,还给操作系统。

在这里插入图片描述

Chunk的Allocate函数

分配一个可用区块(最高优先权),然后firstAvailableBlock_指向下一个可用区块,比如这里可用区块的索引从左边的4变成了右边的3,剩余区块个数也相应调整。

在这里插入图片描述

Chunk的Deallocate函数

释放的指针p已经确定在这个Chunk中,但是p是这个Chunk中的第几个block呢?用p指针减去头指针然后除以每个block的大小,得到该释放的block的索引,这个释放回收的块block具有最高优先权,成为firstAvailableBlock_,然后可利用的block个数+1.

在这里插入图片描述

47 class FixedAllocator分析(上)

FixedAllocator

chunks_: vector<Chunk> // vector里面放了很多chunk
// 两个指针,指向某两个Chunk
allocChunk_: Chunk* 
deallocChunk_: Chunk*

allocChunk_指向最近一次满足分配动作的Chunk,deallocChunk _指向最近一次回收的Chunk。因为有很多chunk,要指定最近用过的chunk,这符合数据的局部性原理。

Allocate的逻辑如下图所示:如果有最近的allocChunk_,那么直接取区块,否则就要for循环从头开始遍历每个chunk,直到找到有可用空间的chunk。return allocChunk->Allocate(blockSize_);是向这个chunk取区块。

在这里插入图片描述

48 class FixedAllocator分析(下)

第二级FixedAllocator类的Deallocate函数,调用VicinityFind函数查找还回来的指针p落在哪个chunk,找到之后交给第一级Chunk类的Deallocate来处理。

VicinityFind(临近搜寻)函数如下:功能是进行查找。

chunkLength是chunk的大小,后面查找的时候要用

lo是上次还回来的chunk,hi是下一个chunk

loBound和hiBound是vector的头跟尾

整体思路是:并分两路,一路往上查找,一路往下查找。

在lo里面找,找不到的话就往上面的chunk去查找,一直往上,一个接一个的chunk去找。

然后在hi里面找,找不到就往下面的chunk去查找,一直往下,一个接一个的chunk去找。

在这里插入图片描述

下面是FixedAllocator类的DoDeallocate函数

调用Deallocate函数进行回收,然后确认是否是全回收的情况处理。

全回收的时候,需要确认有2个chunk,才回收一个,就是上文讲到的deferring延缓回收。

在这里插入图片描述

49 Loki::allocator总结

很简单的方式判断chunk全回收,指的是记录可用区块个数,当它变成0的时候表示全分配出去,当它恢复到原来的状态,就表示可全回收。

在这里插入图片描述

50 GNU C++对allocators的描述

第五讲 other issues

GNU C++ 对于allocator的描述

在这里插入图片描述

下面介绍两个分配器: new_allocator 和malloc_allocator,它们都没有特别的动作,无非底部调用operator new和malloc。它们没有用内存池。

在这里插入图片描述

另一种做法是使用智能型的allocator,使用内存池,分一大块然后切分成小块。

这类allocator有bitmap_allocator, pool_allocator, _mt_alloc(multithread多线程的分配器)

在这里插入图片描述

GNU C++ 提供三种测试,用于测速:插入数据测试,多线程状态下的插入和删除测试,多线程的生产者和消费者模型测试。

在这里插入图片描述

另外两个智能型allocator是 debug_allocator 和 array_allocator

在这里插入图片描述

51 VS2013标准分配器&G4.9标准分配器与new_allocator以及G4.9malloc

VS2013版本的标准分配器allocator,里面的allocate函数就是调用operator new,底层调用malloc,这是一种没有包装的分配器。

在这里插入图片描述

GNU C++4.9版本的标准分配器 allocator,继承自new_allocator,里面的动作也是operator new 和operator delete,也是没有包装的分配器。

在这里插入图片描述

GNU C++4.9版本的malloc_allocator,里面就是调用malloc和free,没有包装。

在这里插入图片描述

52 G4.9array_allocator

array_allocator

指针_M_array指向一个C++数组,静态数组不需要释放,归还

在这里插入图片描述

看看array_allocator怎么使用

int my[65536];
array_allocator<int, array<int, 65536>> myalloc(&my); // 传入数组的地址

在这里插入图片描述

第二种用法,是用动态的new一块数组,其他用法与上面一致。

在这里插入图片描述

53 G4.9 debug_allocator

debug_allocator是一个包装器,把另一个分配器包装进来,这里是_Alloc分配器,定义为_M_allocator,实际分配的时候就是调用这个分配器的allocate,分配n + extra个大小的空间。

在这里插入图片描述

GNU C++2.9容器使用的不是std::allocator,而是std::alloc,这是一个好的分配器。

在这里插入图片描述

在GNU C++4.9版本的__pool_alloc就是上面2.9版本的alloc。它的缺点是什么呢?只拿不还,不把分配的空间还给操作系统。

在这里插入图片描述

GNU C++4.9版本 __pool_alloc测试用例

在这里插入图片描述

54 bitmap_allocator上

这里重要的是_M_allocate_single_object_M_deallocate_single_object,这是什么意思呢?所有的allocator都是供给容器使用的,容器每次请求的都是一个元素的内存分配,所以这里就是单独处理一个object的请求。当不是一个object的时候,就会退化到operator new和operator delete,但是这种情况一般遇不到。

在这里插入图片描述

当客户是容器的使用,容器要的一个元素的内存空间就是block,如果是std::list的时候,这个block还包括node里面的指针。

下图中64blocks指的是一次性挖64个blocks开始供应,这个是两倍成长,下次挖128个,再是256个,…

挖的这些blocks,加上前面的bitmap,还有前面的数值,一起称为super block。

bitmap中是64bits(对应于blocks的数量),每个bit表示单个block的状态,bitmap是unsigned int,一个bitmap是32位,只能记录32个blocks的情况。这里是64个blocks,需要2个bitmap来记录。

前面还有一个整数use count,记录有几个block被分配

最前面还有一个整数,记录super block的大小

有一个mini vector(模拟标准库中的vector写出来的)来操纵super block,里面的start指针和finish指针分别指向super block的头和尾

在这里插入图片描述

现在客户需要分配内存:下面深灰色这个block被分配出去,use count = 1,然后bitmap[0]最后一位变成0,表示已经分配出去

在这里插入图片描述

然后请求分配第二个block,下面两个灰色的block表示被分配出去,use count = 2,bitmap[0]后两位变成0,表示这两个block被分配出去。

在这里插入图片描述

后面一直分配block出去,下图表示已经分配出去63个block,对应的use count = 63,bitmap[1]和bitmap[0]变成80000000H和00000000H,只有最后一个block对应的bitmap中的bit才为1,表示未被分配出去。

在这里插入图片描述

下面客户归还其中一个block,对应的bitmap要变成1,表示未分配(回收回来),然后use count由63变成62

在这里插入图片描述

当1个super block(有64个blocks)用完后,开始启用第二号super block,这时候super block中的block块数由64扩大两倍变成128个,由4个bitmap整数表示。

而且mini vector中由一个单元,变成两个单元,每个单元指向一个super block。

在这里插入图片描述

第二个super block用完(前面已经用完第一个super block,其含有64个blocks,第二个super block包含128个blocks,也已经用完),启用第三个super bloc,其包含的blocks为128 x 2 = 256个。

mini vector中也有第三个单元来控制这个super block。

在这里插入图片描述

55 bitmap_allocator(下)

上面谈的是bitmap_allocator的分配,下面谈它的回收(容器归还元素空间)机制

第一个super block全回收,用另一个mini vector(称为free list)中的entry指针指向这个super block,表示已经回收。

如果下次新分配一个super block,它其中blocks的数量要减半,如下图所示,如果前三个superblocks大小分别为64个,128个,256个,由于第一个superblock被回收,那么下次分配的superblock大小由已经分配的最大值256变成一半,为128个blocks。

原来的mini vector里面的指向回收的这个superblock头和尾的entry被删除。

在这里插入图片描述

第二个super block也全回收,则free list里的entry加一个,指向这个super block。

原来的mini vector里面指向这个superblock头尾的entry被删除。

在这里插入图片描述

第三个super block被全回收,被free list的指针指向。

在这里插入图片描述

后记

截至2024年1月12日22点09分,完成《C++内存管理机制》的第四讲和第五讲的笔记。主要涉及Loki库中allocator的设计,以及对GNU C++4.9其他allocator的介绍,主要包含bitmap_allocator。

这篇关于C++内存管理机制(侯捷)笔记4(完结)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/599799

相关文章

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

C++中实现调试日志输出

《C++中实现调试日志输出》在C++编程中,调试日志对于定位问题和优化代码至关重要,本文将介绍几种常用的调试日志输出方法,并教你如何在日志中添加时间戳,希望对大家有所帮助... 目录1. 使用 #ifdef _DEBUG 宏2. 加入时间戳:精确到毫秒3.Windows 和 MFC 中的调试日志方法MFC

深入理解C++ 空类大小

《深入理解C++空类大小》本文主要介绍了C++空类大小,规定空类大小为1字节,主要是为了保证对象的唯一性和可区分性,满足数组元素地址连续的要求,下面就来了解一下... 目录1. 保证对象的唯一性和可区分性2. 满足数组元素地址连续的要求3. 与C++的对象模型和内存管理机制相适配查看类对象内存在C++中,规

关于Java内存访问重排序的研究

《关于Java内存访问重排序的研究》文章主要介绍了重排序现象及其在多线程编程中的影响,包括内存可见性问题和Java内存模型中对重排序的规则... 目录什么是重排序重排序图解重排序实验as-if-serial语义内存访问重排序与内存可见性内存访问重排序与Java内存模型重排序示意表内存屏障内存屏障示意表Int

如何测试计算机的内存是否存在问题? 判断电脑内存故障的多种方法

《如何测试计算机的内存是否存在问题?判断电脑内存故障的多种方法》内存是电脑中非常重要的组件之一,如果内存出现故障,可能会导致电脑出现各种问题,如蓝屏、死机、程序崩溃等,如何判断内存是否出现故障呢?下... 如果你的电脑是崩溃、冻结还是不稳定,那么它的内存可能有问题。要进行检查,你可以使用Windows 11

在 VSCode 中配置 C++ 开发环境的详细教程

《在VSCode中配置C++开发环境的详细教程》本文详细介绍了如何在VisualStudioCode(VSCode)中配置C++开发环境,包括安装必要的工具、配置编译器、设置调试环境等步骤,通... 目录如何在 VSCode 中配置 C++ 开发环境:详细教程1. 什么是 VSCode?2. 安装 VSCo

C++11的函数包装器std::function使用示例

《C++11的函数包装器std::function使用示例》C++11引入的std::function是最常用的函数包装器,它可以存储任何可调用对象并提供统一的调用接口,以下是关于函数包装器的详细讲解... 目录一、std::function 的基本用法1. 基本语法二、如何使用 std::function

NameNode内存生产配置

Hadoop2.x 系列,配置 NameNode 内存 NameNode 内存默认 2000m ,如果服务器内存 4G , NameNode 内存可以配置 3g 。在 hadoop-env.sh 文件中配置如下。 HADOOP_NAMENODE_OPTS=-Xmx3072m Hadoop3.x 系列,配置 Nam

【C++ Primer Plus习题】13.4

大家好,这里是国中之林! ❥前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。有兴趣的可以点点进去看看← 问题: 解答: main.cpp #include <iostream>#include "port.h"int main() {Port p1;Port p2("Abc", "Bcc", 30);std::cout <<

C++包装器

包装器 在 C++ 中,“包装器”通常指的是一种设计模式或编程技巧,用于封装其他代码或对象,使其更易于使用、管理或扩展。包装器的概念在编程中非常普遍,可以用于函数、类、库等多个方面。下面是几个常见的 “包装器” 类型: 1. 函数包装器 函数包装器用于封装一个或多个函数,使其接口更统一或更便于调用。例如,std::function 是一个通用的函数包装器,它可以存储任意可调用对象(函数、函数