理解Herbrand Equivalence

2024-01-11 14:28
文章标签 理解 equivalence herbrand

本文主要是介绍理解Herbrand Equivalence,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

笔者最近在看GVN的一系列论文,总会看到一个概念叫Herbran Equivalence,依靠这种定义,能够判断一个GVN算法是否是complete的,也即检测一个算法是否是precise的,只有找到所有Herbrand Equivalence关系的算法才能称得上是完全的。

目录

  • 理解:程序表达式之间的等值关系是不可判定的
  • phi结点和普通表达式之间的相等性
  • 《一种高效的完全值编号算法》定义的值编号
    • 定义Herbrand等值关系
    • 定义值编号
  • 算法执行

理解:程序表达式之间的等值关系是不可判定的

由于检测程序表达式间一般的等值关系是不可判定的,大部分 GVN 算法都将问题做了简化,通常假设条件语句的结果在编译期间是不确定的,并且对所有的运算符都不考虑其特殊语义,即忽略它们可能满足的特殊运算法则,将不同结构的表达式看作不同的表达式. 满足这些限制条件的表达式间的等值关系被称作 Herbrand 等值关系.能够检测到程序中全部 Herbrand 等值关系的 GVN 算法被称为完全 GVN 算法.
以上内容摘自《一种高效的完全值编号算法》。
两个程序表达式是否是等值的,这个问题在编译是无法判定,例如表达式a + b 和 a * b,表面看起来二者不是相等的,但是当运行时赋值a = 2, b = 2,此时两个表达式就是相等的。假定条件表达式在编译期不确定,前提是条件表达式的值不能通过静态分析得到,也即phi结点的两个分支执行哪个是不确定的。所有的运算符不考虑特殊语义,结合下文是说不考虑两个不同运算结构之间的等价性。

phi结点和普通表达式之间的相等性

这篇论文中还举了一些算法之所以是不完全的例子——也即他们无法发现phi结点和普通表达式之间的相等性。
以下几个例子实现了论文中的几个例子。
在这里插入图片描述

例子1:在input例子中发现两个表达式x和y的相等性,在LLVM 中可以识别到此两个表达式之间的相似性并删除之。贴一个Compiler Explorer的链接。

#include <stdio.h>int input(int a, int b) {int c, d, e, x, y, z;scanf("%d", &d);if(d) {x = a + 1;c = a;} else {x = b + 1;c = b;}y = c + 1;scanf("%d", &e);if(e) {return x;} else {return y;}
}int main()
{int a, b;scanf("%d %d", &a, &b);input(a, b);
}

生成的IR主要部分如下:

  %0 = load i32, ptr %d, align 4%tobool.not = icmp eq i32 %0, 0%b.a = select i1 %tobool.not, i32 %b, i32 %a%retval.0 = add nsw i32 %b.a, 1ret i32 %retval.0

突然发现,论文给出了例子2是有问题的。
在这里插入图片描述
这里使用的标记方法是先将 ϕ \phi ϕ结点的所有分支标记完再标记 ϕ \phi ϕ结点,这本身并没有问题,问题在于 n 4 n_4 n4中的表达式应该为 x 1 = x 2 + 1 x_1 = x_2 + 1 x1=x2+1
在修改之后的情况下,当 n 4 n_4 n4基本块的结尾到 n 5 n_5 n5基本块或是 n 4 n_4 n4基本块的结尾到 n 3 n_3 n3基本块的开始都是满足 x 1 = y 2 x_1=y_2 x1=y2的情况的,但是在 n 3 n_3 n3 n 4 n_4 n4结尾这部分是不满足上述等值关系的。因此此种情况可以将两者标记为等值表达式但需要注意范围,不能贸然消除。
例子2对应的Compiler Explorer链接。
例子2:

#include <stdio.h>
int z;
int input(int x, int e, int f) {int y;y = x + 1;do {// if (x == y) {//     z = 1;// } else {//     z = 0;// }x++;// if (x == y) {//     z = 1;// } else {//     z = 0;// }if (e++ > 0) {break;} else {y++;}} while (1);return 0;
}int main() {int x, e, f;scanf("%d %d %d", &x, &e, &f);return input(x, e, f);
}

为了尽量凸显对该GVN能否正确识别,我修改了原文的例子以更好的阐述笔者的思想,读者可以自己尝试,当第一处注释打开时,编译器会判定两个表达式不相等,因此将全局变量z设置为0,第二处注释打开时,编译器会判定两个表达式相等,将全局变量设置为1.对应上图中x1和y1不相等,但x1和y2相等。

第三个例子不能用LLVM实现,因为LLVM不存在两个phi结点的依赖关系。也即图中 a 1 a_1 a1 b 1 b_1 b1之间存在着矛盾关系。
根据论文后续的描述也说明了上述例子在SSA中不成立。相关描述如下:

本文中的模型和算法都基于静态单赋值形式的程序. 在一个静态单赋值形式的程序中,所有变量都有唯一的定值语句,并且所有对变量的使用都被该变量的定值语句所支配,即从程序的入口到达对该变量的使用的所有执行路径都一定经过该变量的定值语句.

可以看到,在上述例子中b1的第一次使用并没有经过其定值。

《一种高效的完全值编号算法》定义的值编号

论文的第二和第三部分分别给出了Herbrand等值关系和值编号的定义。

定义Herbrand等值关系

首先来看第二部分。
在这里插入图片描述
此公式首先定义了某个值到一个表达式的定义,作者的思路是将所有的值都上溯到定义他们的表达式的形式,这样可以比较不同值之间的相等性,带着这样的想法再来看上述公式,第一种情况是t=x的形式(根据后文的描述称为变量表达式),直接将x的表达式传递给t,第二种是t = t1 o t2的二元表达式形式(根据后文的描述称为包含运算符的表达式),将两个二元表达式的操作数的定义进行二元计算。
在这里插入图片描述
其后作者又定义了一个转换函数,也即经过一个程序节点(语句)之后表达式集合的变化,第一种可能是赋值语句,直接将表达式中的t换成x。如果是phi结点,将每条分支上的都进行转换。
在这里插入图片描述
有了单个节点的处理方式,就能够得到一条路径的处理方式,无外乎将不同节点之间的转换函数连接,当遇到phi节点时,当路径明确的情况下也就能选择出某个分支。
在这里插入图片描述
基于上述公式给出了一个P-Herbrand关系,这里的P是Partial的简写,突出了当前路径只是一种可能的运行情况。这个公式定义的不清晰,根据下文的描述应该是检测了某个路径下的Herbrand等值关系。
最后一句话是说当P是所有路径的集合时,得到的Herbrand等值关系不再是部分的,所以可以省略前缀P-。

定义值编号

值编号定义前,作者先定义了两个值编号之间的比较,有如下公式。
在这里插入图片描述
集合原文的描述更容易理解,这里我只说一个问题,第三行两个表达式写反了,应该是第二行最后一部分的否定,否则第二行和第三行不能构成一个分支上的完备集。
在这里插入图片描述
上述定义很明显,如果有变量表达式,那么从其等值集合中取一个最小的表达式作为当前变量的值编号,如果一个表达式是运算符表达式,取最小两个表达式的运算结果作为值编号。

算法执行

这一部分可以结合原文的例子来看,更好理解。

这篇关于理解Herbrand Equivalence的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/594673

相关文章

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

【C++高阶】C++类型转换全攻略:深入理解并高效应用

📝个人主页🌹:Eternity._ ⏩收录专栏⏪:C++ “ 登神长阶 ” 🤡往期回顾🤡:C++ 智能指针 🌹🌹期待您的关注 🌹🌹 ❀C++的类型转换 📒1. C语言中的类型转换📚2. C++强制类型转换⛰️static_cast🌞reinterpret_cast⭐const_cast🍁dynamic_cast 📜3. C++强制类型转换的原因📝

深入理解RxJava:响应式编程的现代方式

在当今的软件开发世界中,异步编程和事件驱动的架构变得越来越重要。RxJava,作为响应式编程(Reactive Programming)的一个流行库,为Java和Android开发者提供了一种强大的方式来处理异步任务和事件流。本文将深入探讨RxJava的核心概念、优势以及如何在实际项目中应用它。 文章目录 💯 什么是RxJava?💯 响应式编程的优势💯 RxJava的核心概念

如何通俗理解注意力机制?

1、注意力机制(Attention Mechanism)是机器学习和深度学习中一种模拟人类注意力的方法,用于提高模型在处理大量信息时的效率和效果。通俗地理解,它就像是在一堆信息中找到最重要的部分,把注意力集中在这些关键点上,从而更好地完成任务。以下是几个简单的比喻来帮助理解注意力机制: 2、寻找重点:想象一下,你在阅读一篇文章的时候,有些段落特别重要,你会特别注意这些段落,反复阅读,而对其他部分

深入理解数据库的 4NF:多值依赖与消除数据异常

在数据库设计中, "范式" 是一个常常被提到的重要概念。许多初学者在学习数据库设计时,经常听到第一范式(1NF)、第二范式(2NF)、第三范式(3NF)以及 BCNF(Boyce-Codd范式)。这些范式都旨在通过消除数据冗余和异常来优化数据库结构。然而,当我们谈到 4NF(第四范式)时,事情变得更加复杂。本文将带你深入了解 多值依赖 和 4NF,帮助你在数据库设计中消除更高级别的异常。 什么是

分布式系统的个人理解小结

分布式系统:分的微小服务,以小而独立的业务为单位,形成子系统。 然后分布式系统中需要有统一的调用,形成大的聚合服务。 同时,微服务群,需要有交流(通讯,注册中心,同步,异步),有管理(监控,调度)。 对外服务,需要有控制的对外开发,安全网关。

Java IO 操作——个人理解

之前一直Java的IO操作一知半解。今天看到一个便文章觉得很有道理( 原文章),记录一下。 首先,理解Java的IO操作到底操作的什么内容,过程又是怎么样子。          数据来源的操作: 来源有文件,网络数据。使用File类和Sockets等。这里操作的是数据本身,1,0结构。    File file = new File("path");   字

理解java虚拟机内存收集

学习《深入理解Java虚拟机》时个人的理解笔记 1、为什么要去了解垃圾收集和内存回收技术? 当需要排查各种内存溢出、内存泄漏问题时,当垃圾收集成为系统达到更高并发量的瓶颈时,我们就必须对这些“自动化”的技术实施必要的监控和调节。 2、“哲学三问”内存收集 what?when?how? 那些内存需要回收?什么时候回收?如何回收? 这是一个整体的问题,确定了什么状态的内存可以

理解分类器(linear)为什么可以做语义方向的指导?(解纠缠)

Attribute Manipulation(属性编辑)、disentanglement(解纠缠)常用的两种做法:线性探针和PCA_disentanglement和alignment-CSDN博客 在解纠缠的过程中,有一种非常简单的方法来引导G向某个方向进行生成,然后我们通过向不同的方向进行行走,那么就会得到这个属性上的图像。那么你利用多个方向进行生成,便得到了各种方向的图像,每个方向对应了很多