imgaug库指南(12):从入门到精通的【图像增强】之旅

2024-01-10 19:52

本文主要是介绍imgaug库指南(12):从入门到精通的【图像增强】之旅,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

引言

在深度学习和计算机视觉的世界里,数据是模型训练的基石,其质量与数量直接影响着模型的性能。然而,获取大量高质量的标注数据往往需要耗费大量的时间和资源。正因如此,数据增强技术应运而生,成为了解决这一问题的关键所在。而imgaug,作为一个功能强大的图像增强库,为我们提供了简便且高效的方法来扩充数据集。本系列博客将带您深入了解如何运用imgaug进行图像增强,助您在深度学习的道路上更进一步。我们将从基础概念讲起,逐步引导您掌握各种变换方法,以及如何根据实际需求定制变换序列。让我们一起深入了解这个强大的工具,探索更多可能性,共同推动深度学习的发展。


前期回顾

链接主要内容
imgaug库指南(三):从入门到精通的【图像增强】之旅详细介绍了imgaug库的数据增强方法 —— 高斯模糊
imgaug库指南(四):从入门到精通的【图像增强】之旅详细介绍了imgaug库的数据增强方法 —— 均值模糊
imgaug库指南(五):从入门到精通的【图像增强】之旅详细介绍了imgaug库的数据增强方法 —— 中值模糊/滤波,并介绍了如何利用【中值滤波】过滤椒盐噪声
imgaug库指南(六):从入门到精通的【图像增强】之旅详细介绍了imgaug库的数据增强方法 —— 双边模糊/滤波
imgaug库指南(七):从入门到精通的【图像增强】之旅详细介绍了imgaug库的数据增强方法 —— 运动模糊
imgaug库指南(八):从入门到精通的【图像增强】之旅详细介绍了imgaug库的数据增强方法 —— 均值迁移模糊
imgaug库指南(九):从入门到精通的【图像增强】之旅详细介绍了imgaug库的数据增强方法 —— 加性噪声(Add方法)
imgaug库指南(十):从入门到精通的【图像增强】之旅详细介绍了imgaug库的数据增强方法 —— 加性噪声(AddElementwise方法)

在本博客中,我们将向您详细介绍imgaug库的数据增强方法 —— 加性拉普拉斯噪声(AdditiveLaplaceNoise方法)


加性拉普拉斯噪声(AdditiveLaplaceNoise方法)

功能介绍

AdditiveLaplaceNoiseimgaug库中的一个方法,用于向图像添加拉普拉斯噪声。拉普拉斯噪声是一种具有重尾分布的噪声,与高斯噪声相比,它在远离均值的地方有更多的值。这种噪声常常被用来模拟图像在恶劣条件下的退化。

The laplace distribution is similar to the gaussian distribution, but puts more weight on the long tail. Hence, this noise will add more outliers (very high/low values). It is somewhere between gaussian noise and salt and pepper noise.
翻译:拉普拉斯分布与高斯分布有一定相似性,但它在长尾区域赋予了更多的权重。这种特性使得噪声中异常值(过高或过低的数值)出现的几率增加。在噪声类型上,拉普拉斯噪声处于高斯噪声和椒盐噪声之间,为我们提供了更多的选择和灵活性。

语法

import imgaug.augmenters as iaa
aug = iaa.AdditiveLaplaceNoise(loc=0, scale=(0, 15), per_channel=False)
  • loc: 产生噪声的拉普拉斯分布的均值。
    • loc为整数,则噪声的均值即为value
    • loc为元组(a, b),则均值为从区间[a, b]中采样的随机数;
    • loc为列表,则均值为从列表中随机采样的数;
  • scale: 产生噪声的拉普拉斯分布的标准差。
    • scale为整数,则噪声的标准差即为scale
    • scale为元组(a, b),则噪声的标准差为从区间[a, b]中采样的随机数;
    • scale为列表,则噪声的标准差为从列表中随机采样的数;
  • per_channel:
    • per_channelTrue,则为每幅图像的每个像素点对应的通道上加上随机整数 ==> RGB图像指定像素位置上的三个通道分别对应三个随机整数,且每个像素点都对应不同的三个随机整数;
    • per_channelFalse,则为每幅图像的每个像素点对应的通道上加上随机采样的相同整数 ==> RGB图像指定像素位置上的三个通道都是同一个随机整数,但每个像素点都对应不同的随机整数;
    • per_channel为区间[0,1]的浮点数,假设per_channel=0.6,那么对于60%的图像,per_channelTrue;对于剩余的40%的图像,per_channelFalse

示例代码

  1. 使用不同的loc
import cv2
import imgaug.augmenters as iaa
import matplotlib.pyplot as plt# 读取图像
img_path = r"D:\python_project\lena.png"
img = cv2.imread(img_path)
image = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)# 创建数据增强器
aug1 = iaa.AdditiveLaplaceNoise(loc=0, scale=30, per_channel=False)
aug2 = iaa.AdditiveLaplaceNoise(loc=60, scale=30, per_channel=False)
aug3 = iaa.AdditiveLaplaceNoise(loc=120, scale=30, per_channel=False)# 对图像进行数据增强
blurred_image1 = aug1(image=image)
blurred_image2 = aug2(image=image)
blurred_image3 = aug3(image=image)# 展示原始图像和数据增强后的图像
fig, axes = plt.subplots(2, 2, figsize=(10, 10))
axes[0][0].imshow(image)
axes[0][0].set_title("Original Image")
axes[0][1].imshow(blurred_image1)
axes[0][1].set_title("Augmented Image1")
axes[1][0].imshow(blurred_image2)
axes[1][0].set_title("Augmented Image2")
axes[1][1].imshow(blurred_image3)
axes[1][1].set_title("Augmented Image3")
plt.show()

运行结果如下:

图1 原图及数据增强结果可视化

可以看到,三幅数据增强后的图像,其亮度相对于原图而言,都整体变亮/暗了,并且出现了大量噪声。

  1. 使用不同的scale
import cv2
import imgaug.augmenters as iaa
import matplotlib.pyplot as plt# 读取图像
img_path = r"D:\python_project\lena.png"
img = cv2.imread(img_path)
image = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)# 创建增强器
aug1 = iaa.AdditiveLaplaceNoise(loc=60, scale=0, per_channel=False)
aug2 = iaa.AdditiveLaplaceNoise(loc=60, scale=30, per_channel=False)
aug3 = iaa.AdditiveLaplaceNoise(loc=60, scale=60, per_channel=False)# 对图像进行数据增强
blurred_image1 = aug1(image=image)
blurred_image2 = aug2(image=image)
blurred_image3 = aug3(image=image)# 展示原始图像和数据增强后的图像
fig, axes = plt.subplots(2, 2, figsize=(10, 10))
axes[0][0].imshow(image)
axes[0][0].set_title("Original Image")
axes[0][1].imshow(blurred_image1)
axes[0][1].set_title("Augmented Image1")
axes[1][0].imshow(blurred_image2)
axes[1][0].set_title("Augmented Image2")
axes[1][1].imshow(blurred_image3)
axes[1][1].set_title("Augmented Image3")
plt.show()

运行结果如下:

图2 原图及数据增强结果可视化

可以从图2看出:

  • 当标准差参数scale=0时⇒ 增强器为RGB图像的每个像素位置上都添加了相同的数值 ⇒ 数据增强后,新图像亮度整体变大了(均值为60),且无噪声。
  • 当标准差参数scale!=0时⇒ 增强器为RGB图像的每个像素位置上都添加了随机的数值 ⇒ 数据增强后,新图像亮度整体变大了(均值为60),且出现了大量噪声。

注意事项

  1. 噪声的特性:拉普拉斯噪声是一种具有重尾分布的噪声,它会产生较亮的像素值,这可能会影响到图像的视觉效果。
  2. 标准差的选择scale参数决定了噪声的强度。较大的标准差会产生更明显的噪声,而较小的标准差则产生较弱的噪声。需要根据实际需求调整。
  3. 通道独立性:如果设置了per_channel=True,则会对每个通道独立地应用噪声。这在某些情况下可能是有用的,例如,当你想对图像的不同颜色通道应用不同的噪声时。
  4. 与其他增强器的结合使用:可以与其他图像增强方法结合使用,以获得更丰富的效果。例如,可以先应用中值模糊,然后再添加拉普拉斯噪声。
  5. 数值范围:在添加噪声后,需要确保图像的像素值仍然在合适的范围内(例如,对于8位图像,范围是0-255)。如果超出范围,可能会导致图像失真。

总结

AdditiveLaplaceNoiseimgaug库中一个非常有用的方法,用于向图像添加拉普拉斯噪声。这种噪声在模拟图像在恶劣条件下的退化时非常有用。使用时需要注意噪声的特性、标准差的调整、通道独立性的选择、与其他增强器的结合以及数值范围等问题。


小结

imgaug是一个强大的图像增强库,它可以帮助你创建出丰富多样的训练数据,从而改进你的深度学习模型的性能。通过定制变换序列和参数,你可以轻松地适应各种应用场景,从计算机视觉到医学影像分析。随着深度学习的发展,imgaug在未来将继续发挥重要作用。因此,将imgaug纳入你的数据增强工具箱是一个明智的选择。

参考链接


结尾

亲爱的读者,首先感谢抽出宝贵的时间来阅读我们的博客。我们真诚地欢迎您留下评论和意见,因为这对我们来说意义非凡。
俗话说,当局者迷,旁观者清。的客观视角对于我们发现博文的不足、提升内容质量起着不可替代的作用。
如果您觉得我们的博文给您带来了启发,那么,希望能为我们点个免费的赞/关注您的支持和鼓励是我们持续创作的动力
请放心,我们会持续努力创作,并不断优化博文质量,只为给带来更佳的阅读体验。
再次感谢的阅读,愿我们共同成长,共享智慧的果实!

这篇关于imgaug库指南(12):从入门到精通的【图像增强】之旅的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/591893

相关文章

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

数论入门整理(updating)

一、gcd lcm 基础中的基础,一般用来处理计算第一步什么的,分数化简之类。 LL gcd(LL a, LL b) { return b ? gcd(b, a % b) : a; } <pre name="code" class="cpp">LL lcm(LL a, LL b){LL c = gcd(a, b);return a / c * b;} 例题:

Java 创建图形用户界面(GUI)入门指南(Swing库 JFrame 类)概述

概述 基本概念 Java Swing 的架构 Java Swing 是一个为 Java 设计的 GUI 工具包,是 JAVA 基础类的一部分,基于 Java AWT 构建,提供了一系列轻量级、可定制的图形用户界面(GUI)组件。 与 AWT 相比,Swing 提供了许多比 AWT 更好的屏幕显示元素,更加灵活和可定制,具有更好的跨平台性能。 组件和容器 Java Swing 提供了许多

【IPV6从入门到起飞】5-1 IPV6+Home Assistant(搭建基本环境)

【IPV6从入门到起飞】5-1 IPV6+Home Assistant #搭建基本环境 1 背景2 docker下载 hass3 创建容器4 浏览器访问 hass5 手机APP远程访问hass6 更多玩法 1 背景 既然电脑可以IPV6入站,手机流量可以访问IPV6网络的服务,为什么不在电脑搭建Home Assistant(hass),来控制你的设备呢?@智能家居 @万物互联

poj 2104 and hdu 2665 划分树模板入门题

题意: 给一个数组n(1e5)个数,给一个范围(fr, to, k),求这个范围中第k大的数。 解析: 划分树入门。 bing神的模板。 坑爹的地方是把-l 看成了-1........ 一直re。 代码: poj 2104: #include <iostream>#include <cstdio>#include <cstdlib>#include <al

MySQL-CRUD入门1

文章目录 认识配置文件client节点mysql节点mysqld节点 数据的添加(Create)添加一行数据添加多行数据两种添加数据的效率对比 数据的查询(Retrieve)全列查询指定列查询查询中带有表达式关于字面量关于as重命名 临时表引入distinct去重order by 排序关于NULL 认识配置文件 在我们的MySQL服务安装好了之后, 会有一个配置文件, 也就

基于UE5和ROS2的激光雷达+深度RGBD相机小车的仿真指南(五):Blender锥桶建模

前言 本系列教程旨在使用UE5配置一个具备激光雷达+深度摄像机的仿真小车,并使用通过跨平台的方式进行ROS2和UE5仿真的通讯,达到小车自主导航的目的。本教程默认有ROS2导航及其gazebo仿真相关方面基础,Nav2相关的学习教程可以参考本人的其他博客Nav2代价地图实现和原理–Nav2源码解读之CostMap2D(上)-CSDN博客往期教程: 第一期:基于UE5和ROS2的激光雷达+深度RG

音视频入门基础:WAV专题(10)——FFmpeg源码中计算WAV音频文件每个packet的pts、dts的实现

一、引言 从文章《音视频入门基础:WAV专题(6)——通过FFprobe显示WAV音频文件每个数据包的信息》中我们可以知道,通过FFprobe命令可以打印WAV音频文件每个packet(也称为数据包或多媒体包)的信息,这些信息包含该packet的pts、dts: 打印出来的“pts”实际是AVPacket结构体中的成员变量pts,是以AVStream->time_base为单位的显

C语言指针入门 《C语言非常道》

C语言指针入门 《C语言非常道》 作为一个程序员,我接触 C 语言有十年了。有的朋友让我推荐 C 语言的参考书,我不敢乱推荐,尤其是国内作者写的书,往往七拼八凑,漏洞百出。 但是,李忠老师的《C语言非常道》值得一读。对了,李老师有个官网,网址是: 李忠老师官网 最棒的是,有配套的教学视频,可以试看。 试看点这里 接下来言归正传,讲解指针。以下内容很多都参考了李忠老师的《C语言非