机器学习简答题

2024-01-09 23:04
文章标签 学习 机器 简答题

本文主要是介绍机器学习简答题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1、请简述人工智能和机器学习,深度学习的关系?

机器学习是人工智能的一个实现途径。深度学习是机器学习的一个方法发展而来

2、根据数据集组成不同,通常可以把机器学习算法分为哪四类?

监督学习、无监督学习、半监督学习、强化学习

3、请简述什么是监督学习?什么是无监督学习?

有监督学习是指训练数据中包含了输入和输出的标签信息,目标是通过已知输入和输出来预测新数据的标签。

无监督学习是指训练数据中只有输入特征,没有输出标签,目标是根据数据的内在结构、分布或相似性进行聚类、降维等操作。

具体例子:

假设我们有一组包含房屋面积和销售价格的数据。如果我们要根据已有数据预测新房屋的销售价格,这就是一个有监督学习的问题。而如果我们只有房屋面积的数据,但没有任何关于价格的信息,我们可以使用聚类算法将相似大小的房屋分组,这是一个无监督学习的问题。

4、请简述什么是机器学习?

机器学习是从数据中自动分析获得模型,并利用模型对未知数据进行预测。

5、机器学习工作流程有哪五步?

1.获取数据
2.数据基本处理
3.特征工程
4.机器学习(模型训练)
5.模型评估
结果达到要求就上线服务,如果没有达到要求,重新上面步骤

6、什么是线性回归?它的特点是什么?

线性回归利用回归方程(函数)对一个或多个自变量(特征值)和因变量(目标值)之间关系进行建模的一种分析方式

特点:只有一个自变量的情况称为单变量回归,多于一个自变量情况的叫做多元回归。

7、常见的梯度下降算法有哪些?

全梯度下降算法,随机梯度下降算法,小批量梯度下降算法,随机平均梯度下降算法。

8 、请简要解释什么是过拟合,并提出至少三种防止过拟合的方法。

答:过拟合是指在训练数据上表现很好,但在新数据上表现较差的现象。

防止过拟合的方法包括:

- 数据集扩充:增加更多的训练样本,从而减少模型对特定数据的过度拟合。

- 正则化:通过在损失函数中引入正则化项,约束模型的复杂度,防止模型过分拟合训练数据。

- 交叉验证:使用交叉验证方法对模型进行评估,通过评估模型在不同数据集上的性能,选择性能较好的模型。

- 特征选择:选择最相关的特征,去除冗余或无关的特征,以减少模型的复杂度。

9、欠拟合和过拟合的原因分别有哪些?如何避免?

分析:

欠拟合的原因:模型复杂度过低,不能很好的拟合所有的数据,训练误差大;

避免欠拟合:增加模型复杂度,如采用高阶模型(预测)或者引入更多特征(分类)等。

过拟合的原因:模型复杂度过高,训练数据过少,训练误差小,测试误差大;

避免过拟合:降低模型复杂度,如加上正则惩罚项,如L1,L2,增加训练数据等。

10、简述一下K-means算法的优点和缺点。

优点
1)原理简单(靠近中心点),实现容易。
2)聚类效果中上(依赖K的选择)。
3)空间复杂度o(N),时间复杂度o(IKN) 。N为样本点个数,K为中心点个数,I为迭代次数。

缺点
1)对离群点,噪声敏感 (中心点易偏移)。
2)很难发现大小差别很大的簇及进行增量计算。
3)结果不一定是全局最优,只能保证局部最优(与K的个数及初值选取有关)。
 

这篇关于机器学习简答题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/588726

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

线性代数|机器学习-P36在图中找聚类

文章目录 1. 常见图结构2. 谱聚类 感觉后面几节课的内容跨越太大,需要补充太多的知识点,教授讲得内容跨越较大,一般一节课的内容是书本上的一章节内容,所以看视频比较吃力,需要先预习课本内容后才能够很好的理解教授讲解的知识点。 1. 常见图结构 假设我们有如下图结构: Adjacency Matrix:行和列表示的是节点的位置,A[i,j]表示的第 i 个节点和第 j 个

Node.js学习记录(二)

目录 一、express 1、初识express 2、安装express 3、创建并启动web服务器 4、监听 GET&POST 请求、响应内容给客户端 5、获取URL中携带的查询参数 6、获取URL中动态参数 7、静态资源托管 二、工具nodemon 三、express路由 1、express中路由 2、路由的匹配 3、路由模块化 4、路由模块添加前缀 四、中间件