attention机制SENET、CBAM模块原理总结

2024-01-09 10:32

本文主要是介绍attention机制SENET、CBAM模块原理总结,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

参考博客:https://blog.csdn.net/weixin_33602281/article/details/85223216

def cbam_module(inputs,reduction_ratio=0.5,name=""):with tf.variable_scope("cbam_"+name, reuse=tf.AUTO_REUSE):#假如输入是[batsize,h,w,channel],#channel attension 因为要得到batsize * 1 * 1 * channel,它的全连接层第一层#隐藏层单元个数是channel / r, 第二层是channel,所以这里把channel赋值给hidden_numbatch_size,hidden_num=inputs.get_shape().as_list()[0],inputs.get_shape().as_list()[3]#通道attension#全局最大池化,窗口大小为h * w,所以对于这个数据[batsize,h,w,channel],他其实是求每个h * w面积的最大值#这里实现是先对h这个维度求最大值,然后对w这个维度求最大值,平均池化也一样maxpool_channel=tf.reduce_max(tf.reduce_max(inputs,axis=1,keepdims=True),axis=2,keepdims=True)avgpool_channel=tf.reduce_mean(tf.reduce_mean(inputs,axis=1,keepdims=True),axis=2,keepdims=True)#上面全局池化结果为batsize * 1 * 1 * channel,它这个拉平输入到全连接层#这个拉平,它会保留batsize,所以结果是[batsize,channel]maxpool_channel = tf.layers.Flatten()(maxpool_channel)avgpool_channel = tf.layers.Flatten()(avgpool_channel)#将上面拉平后结果输入到全连接层,第一个全连接层hiddensize = channel/r = channel * reduction_ratio,#第二哥全连接层hiddensize = channelmlp_1_max=tf.layers.dense(inputs=maxpool_channel,units=int(hidden_num*reduction_ratio),name="mlp_1",reuse=None,activation=tf.nn.relu)mlp_2_max=tf.layers.dense(inputs=mlp_1_max,units=hidden_num,name="mlp_2",reuse=None)#全连接层输出结果为[batsize,channel],这里又降它转回到原来维度batsize * 1 * 1 * channel,mlp_2_max=tf.reshape(mlp_2_max,[batch_size,1,1,hidden_num])mlp_1_avg=tf.layers.dense(inputs=avgpool_channel,units=int(hidden_num*reduction_ratio),name="mlp_1",reuse=True,activation=tf.nn.relu)mlp_2_avg=tf.layers.dense(inputs=mlp_1_avg,units=hidden_num,name="mlp_2",reuse=True)mlp_2_avg=tf.reshape(mlp_2_avg,[batch_size,1,1,hidden_num])#将平均和最大池化的结果维度都是[batch_size,1,1,channel]相加,然后进行sigmod,维度不变channel_attention=tf.nn.sigmoid(mlp_2_max+mlp_2_avg)#和最开始的inputs相乘,相当于[batch_size,1,1,channel] * [batch_size,h,w,channel]#只有维度一样才能相乘,这里相乘相当于给每个通道作用了不同的权重channel_refined_feature=inputs*channel_attention#空间attension#上面得到的结果维度依然是[batch_size,h,w,channel],#下面要进行全局通道池化,其实就是一条通道里面那个通道的值最大,其实就是对channel这个维度求最大值#每个通道池化相当于将通道压缩到了1维,有两个池化,结果为两个[batch_size,h,w,1]feature mapmaxpool_spatial=tf.reduce_max(inputs,axis=3,keepdims=True)avgpool_spatial=tf.reduce_mean(inputs,axis=3,keepdims=True)#将两个[batch_size,h,w,1]的feature map进行通道合并得到[batch_size,h,w,2]的feature mapmax_avg_pool_spatial=tf.concat([maxpool_spatial,avgpool_spatial],axis=3)#然后对上面的feature map用1个7*7的卷积核进行卷积得到[batch_size,h,w,1]的feature map,因为是用一个卷积核卷的#所以将2个输入通道压缩到了1个输出通道conv_layer=tf.layers.conv2d(inputs=max_avg_pool_spatial, filters=1, kernel_size=(7, 7), padding="same", activation=None)#然后再对上面得到的[batch_size,h,w,1]feature map进行sigmod,这里为什么要用一个卷积核压缩到1个通道,相当于只得到了一个面积的值#然后进行sigmod,因为我们要求的就是feature map面积上不同位置像素的中重要性,所以它压缩到了一个通道,然后求sigmodspatial_attention=tf.nn.sigmoid(conv_layer)#上面得到了空间attension feature map [batch_size,h,w,1],然后再用这个和经过空间attension作用的结果相乘得到最终的结果#这个结果就是经过通道和空间attension共同作用的结果refined_feature=channel_refined_feature*spatial_attentionreturn refined_feature

这篇关于attention机制SENET、CBAM模块原理总结的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/586816

相关文章

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

Android ClassLoader加载机制详解

《AndroidClassLoader加载机制详解》Android的ClassLoader负责加载.dex文件,基于双亲委派模型,支持热修复和插件化,需注意类冲突、内存泄漏和兼容性问题,本文给大家介... 目录一、ClassLoader概述1.1 类加载的基本概念1.2 android与Java Class

Java通过驱动包(jar包)连接MySQL数据库的步骤总结及验证方式

《Java通过驱动包(jar包)连接MySQL数据库的步骤总结及验证方式》本文详细介绍如何使用Java通过JDBC连接MySQL数据库,包括下载驱动、配置Eclipse环境、检测数据库连接等关键步骤,... 目录一、下载驱动包二、放jar包三、检测数据库连接JavaJava 如何使用 JDBC 连接 mys

Spring事务传播机制最佳实践

《Spring事务传播机制最佳实践》Spring的事务传播机制为我们提供了优雅的解决方案,本文将带您深入理解这一机制,掌握不同场景下的最佳实践,感兴趣的朋友一起看看吧... 目录1. 什么是事务传播行为2. Spring支持的七种事务传播行为2.1 REQUIRED(默认)2.2 SUPPORTS2

从原理到实战深入理解Java 断言assert

《从原理到实战深入理解Java断言assert》本文深入解析Java断言机制,涵盖语法、工作原理、启用方式及与异常的区别,推荐用于开发阶段的条件检查与状态验证,并强调生产环境应使用参数验证工具类替代... 目录深入理解 Java 断言(assert):从原理到实战引言:为什么需要断言?一、断言基础1.1 语

MySQL中的锁机制详解之全局锁,表级锁,行级锁

《MySQL中的锁机制详解之全局锁,表级锁,行级锁》MySQL锁机制通过全局、表级、行级锁控制并发,保障数据一致性与隔离性,全局锁适用于全库备份,表级锁适合读多写少场景,行级锁(InnoDB)实现高并... 目录一、锁机制基础:从并发问题到锁分类1.1 并发访问的三大问题1.2 锁的核心作用1.3 锁粒度分

JavaSE正则表达式用法总结大全

《JavaSE正则表达式用法总结大全》正则表达式就是由一些特定的字符组成,代表的是一个规则,:本文主要介绍JavaSE正则表达式用法的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录常用的正则表达式匹配符正则表China编程达式常用的类Pattern类Matcher类PatternSynta

Python中re模块结合正则表达式的实际应用案例

《Python中re模块结合正则表达式的实际应用案例》Python中的re模块是用于处理正则表达式的强大工具,正则表达式是一种用来匹配字符串的模式,它可以在文本中搜索和匹配特定的字符串模式,这篇文章主... 目录前言re模块常用函数一、查看文本中是否包含 A 或 B 字符串二、替换多个关键词为统一格式三、提

MySQL中的表连接原理分析

《MySQL中的表连接原理分析》:本文主要介绍MySQL中的表连接原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、环境3、表连接原理【1】驱动表和被驱动表【2】内连接【3】外连接【4编程】嵌套循环连接【5】join buffer4、总结1、背景

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实