本文主要是介绍attention机制SENET、CBAM模块原理总结,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
参考博客:https://blog.csdn.net/weixin_33602281/article/details/85223216
def cbam_module(inputs,reduction_ratio=0.5,name=""):with tf.variable_scope("cbam_"+name, reuse=tf.AUTO_REUSE):#假如输入是[batsize,h,w,channel],#channel attension 因为要得到batsize * 1 * 1 * channel,它的全连接层第一层#隐藏层单元个数是channel / r, 第二层是channel,所以这里把channel赋值给hidden_numbatch_size,hidden_num=inputs.get_shape().as_list()[0],inputs.get_shape().as_list()[3]#通道attension#全局最大池化,窗口大小为h * w,所以对于这个数据[batsize,h,w,channel],他其实是求每个h * w面积的最大值#这里实现是先对h这个维度求最大值,然后对w这个维度求最大值,平均池化也一样maxpool_channel=tf.reduce_max(tf.reduce_max(inputs,axis=1,keepdims=True),axis=2,keepdims=True)avgpool_channel=tf.reduce_mean(tf.reduce_mean(inputs,axis=1,keepdims=True),axis=2,keepdims=True)#上面全局池化结果为batsize * 1 * 1 * channel,它这个拉平输入到全连接层#这个拉平,它会保留batsize,所以结果是[batsize,channel]maxpool_channel = tf.layers.Flatten()(maxpool_channel)avgpool_channel = tf.layers.Flatten()(avgpool_channel)#将上面拉平后结果输入到全连接层,第一个全连接层hiddensize = channel/r = channel * reduction_ratio,#第二哥全连接层hiddensize = channelmlp_1_max=tf.layers.dense(inputs=maxpool_channel,units=int(hidden_num*reduction_ratio),name="mlp_1",reuse=None,activation=tf.nn.relu)mlp_2_max=tf.layers.dense(inputs=mlp_1_max,units=hidden_num,name="mlp_2",reuse=None)#全连接层输出结果为[batsize,channel],这里又降它转回到原来维度batsize * 1 * 1 * channel,mlp_2_max=tf.reshape(mlp_2_max,[batch_size,1,1,hidden_num])mlp_1_avg=tf.layers.dense(inputs=avgpool_channel,units=int(hidden_num*reduction_ratio),name="mlp_1",reuse=True,activation=tf.nn.relu)mlp_2_avg=tf.layers.dense(inputs=mlp_1_avg,units=hidden_num,name="mlp_2",reuse=True)mlp_2_avg=tf.reshape(mlp_2_avg,[batch_size,1,1,hidden_num])#将平均和最大池化的结果维度都是[batch_size,1,1,channel]相加,然后进行sigmod,维度不变channel_attention=tf.nn.sigmoid(mlp_2_max+mlp_2_avg)#和最开始的inputs相乘,相当于[batch_size,1,1,channel] * [batch_size,h,w,channel]#只有维度一样才能相乘,这里相乘相当于给每个通道作用了不同的权重channel_refined_feature=inputs*channel_attention#空间attension#上面得到的结果维度依然是[batch_size,h,w,channel],#下面要进行全局通道池化,其实就是一条通道里面那个通道的值最大,其实就是对channel这个维度求最大值#每个通道池化相当于将通道压缩到了1维,有两个池化,结果为两个[batch_size,h,w,1]feature mapmaxpool_spatial=tf.reduce_max(inputs,axis=3,keepdims=True)avgpool_spatial=tf.reduce_mean(inputs,axis=3,keepdims=True)#将两个[batch_size,h,w,1]的feature map进行通道合并得到[batch_size,h,w,2]的feature mapmax_avg_pool_spatial=tf.concat([maxpool_spatial,avgpool_spatial],axis=3)#然后对上面的feature map用1个7*7的卷积核进行卷积得到[batch_size,h,w,1]的feature map,因为是用一个卷积核卷的#所以将2个输入通道压缩到了1个输出通道conv_layer=tf.layers.conv2d(inputs=max_avg_pool_spatial, filters=1, kernel_size=(7, 7), padding="same", activation=None)#然后再对上面得到的[batch_size,h,w,1]feature map进行sigmod,这里为什么要用一个卷积核压缩到1个通道,相当于只得到了一个面积的值#然后进行sigmod,因为我们要求的就是feature map面积上不同位置像素的中重要性,所以它压缩到了一个通道,然后求sigmodspatial_attention=tf.nn.sigmoid(conv_layer)#上面得到了空间attension feature map [batch_size,h,w,1],然后再用这个和经过空间attension作用的结果相乘得到最终的结果#这个结果就是经过通道和空间attension共同作用的结果refined_feature=channel_refined_feature*spatial_attentionreturn refined_feature
这篇关于attention机制SENET、CBAM模块原理总结的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!