知识图谱商业化落地,制约因素主要在于标准化

2024-01-09 04:08

本文主要是介绍知识图谱商业化落地,制约因素主要在于标准化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

知识图谱商业化落地,制约因素主要在于标准化 

重要技术进展 

知识图谱技术在过去这一年取得的重要技术进展有:

知识抽取方面,多模态信息抽取在同时处理文本和视频方面取得了进展;知识表示方面,自注意力机制的知识表示方法越来越走向实用;知识应用方面,很多行业开始构建行业知识库,用于各类下游任务。

明略科技资深科学家张杰在接受 InfoQ 采访时指出,现阶段,在知识图谱方面,业界普遍面临的研发难点主要体现在两个方面:算法方面,针对非结构化数据的信息抽取和实体对齐的准确度难以保障直接商用,需人工校验;工程方面,行业图谱构建成本高,需要大量的人工标注,另外构建进度也不是一蹴而就,需要业务专家不断运维。

张杰预测,2022 年,领域预训练语言模型和 Prompt 在知识图谱中的应用,有望使得信息抽取环节得到进一步提升。针对技能性知识的抽取技术和多模态抽取技术,商用前景广阔。

应用落地进展 

2021 年,知识图谱技术的应用落地,在 ToC 场景中仍主要用于搜索、推荐的提升,在 ToB 场景中集中在可视化上。

张杰认为,现阶段,制约知识图谱商业化落地的主要因素在于标准化,行业图谱的 schema 很难在企业内部大范围内达成认知的一致性,影响了后续的标注、抽取、应用。

2022 年,知识图谱技术的大规模化应用可能会在制造业出现突破,制造业的知识密度高、重视标准化,头部企业重视数字化建设,积累了大量原始数据。

2022 年,值得关注的重要技术趋势 

人工智能工程化 

近两年,人工智能工程化(AI Engineering)格外受关注。在 Gartner 发布的 2021 年和 2022 年重要战略技术趋势中,人工智能工程化都被列入其中。人工智能工程化是一种实现人工智能模型操作化的综合方法。

不久前,Gartner 高级研究总监高挺曾在接受 InfoQ 采访时表示,AI 工程化本质上是 AI 在企业中大规模、全流程的落地过程,尽管目前大家现在对 AI 期待很高,但实际上 AI 目前的应用仍然是被低估的。因为,很多 AI 项目的价值只能体现在一些“点对点”的一次性的方案中。将 AI 大规模落地的工程化方法(包含 DataOps、ModelOps 和 DevOps)总和起来,便是“AI 的工程化”的一整套体系。

这篇关于知识图谱商业化落地,制约因素主要在于标准化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/585874

相关文章

Java架构师知识体认识

源码分析 常用设计模式 Proxy代理模式Factory工厂模式Singleton单例模式Delegate委派模式Strategy策略模式Prototype原型模式Template模板模式 Spring5 beans 接口实例化代理Bean操作 Context Ioc容器设计原理及高级特性Aop设计原理Factorybean与Beanfactory Transaction 声明式事物

便携式气象仪器的主要特点

TH-BQX9】便携式气象仪器,也称为便携式气象仪或便携式自动气象站,是一款高度集成、低功耗、可快速安装、便于野外监测使用的高精度自动气象观测设备。以下是关于便携式气象仪器的详细介绍:   主要特点   高精度与多功能:便携式气象仪器能够采集多种气象参数,包括但不限于风速、风向、温度、湿度、气压等,部分高级型号还能监测雨量和辐射等。数据采集与存储:配备微电脑气象数据采集仪,具有实时时钟、数据存

sqlite3 相关知识

WAL 模式 VS 回滚模式 特性WAL 模式回滚模式(Rollback Journal)定义使用写前日志来记录变更。使用回滚日志来记录事务的所有修改。特点更高的并发性和性能;支持多读者和单写者。支持安全的事务回滚,但并发性较低。性能写入性能更好,尤其是读多写少的场景。写操作会造成较大的性能开销,尤其是在事务开始时。写入流程数据首先写入 WAL 文件,然后才从 WAL 刷新到主数据库。数据在开始

Kubernetes PodSecurityPolicy:PSP能实现的5种主要安全策略

Kubernetes PodSecurityPolicy:PSP能实现的5种主要安全策略 1. 特权模式限制2. 宿主机资源隔离3. 用户和组管理4. 权限提升控制5. SELinux配置 💖The Begin💖点点关注,收藏不迷路💖 Kubernetes的PodSecurityPolicy(PSP)是一个关键的安全特性,它在Pod创建之前实施安全策略,确保P

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

分布式系统的主要考虑

异构性:分布式系统由于基于不同的网路、操作系统、计算机硬件和编程语言来构造,必须要考虑一种通用的网络通讯协议来屏蔽异构系统之间的禅意。一般交由中间件来处理这些差异。缺乏全球时钟:在程序需要协作时,它们通过交换消息来协调它们的动作。紧密的协调经常依赖于对程序动作发生时间的共识,但是,实际上网络上计算机同步时钟的准确性受到极大的限制,即没有一个正确时间的全局概念。这是通过网络发送消息作为唯一的通信方式

【Python知识宝库】上下文管理器与with语句:资源管理的优雅方式

🎬 鸽芷咕:个人主页  🔥 个人专栏: 《C++干货基地》《粉丝福利》 ⛺️生活的理想,就是为了理想的生活! 文章目录 前言一、什么是上下文管理器?二、上下文管理器的实现三、使用内置上下文管理器四、使用`contextlib`模块五、总结 前言 在Python编程中,资源管理是一个重要的主题,尤其是在处理文件、网络连接和数据库

dr 航迹推算 知识介绍

DR(Dead Reckoning)航迹推算是一种在航海、航空、车辆导航等领域中广泛使用的技术,用于估算物体的位置。DR航迹推算主要通过已知的初始位置和运动参数(如速度、方向)来预测物体的当前位置。以下是 DR 航迹推算的详细知识介绍: 1. 基本概念 Dead Reckoning(DR): 定义:通过利用已知的当前位置、速度、方向和时间间隔,计算物体在下一时刻的位置。应用:用于导航和定位,

嵌入式技术的核心技术有哪些?请详细列举并解释每项技术的主要功能和应用场景。

嵌入式技术的核心技术包括处理器技术、IC技术和设计/验证技术。 1. 处理器技术    通用处理器:这类处理器适用于不同类型的应用,其主要特征是存储程序和通用的数据路径,使其能够处理各种计算任务。例如,在智能家居中,通用处理器可以用于控制和管理家庭设备,如灯光、空调和安全系统。    单用途处理器:这些处理器执行特定程序,如JPEG编解码器,专门用于视频信息的压缩或解压。在数字相机中,单用途

企业大模型落地的“最后一公里”攻略

一、大模型落地的行业现状与前景 大模型在多个行业展现出强大的应用潜力。在金融行业,沉淀了大量高质量数据,各金融平台用户数以亿计,交易数据浩如烟海。利用大模型分析处理这些数据,金融机构可以预测用户行为偏好,更高效、准确评估客户风险,实时监测交易和市场波动,及时制定策略。IDC 调研显示,超半数的金融机构计划在 2023 年投资生成式人工智能技术。 在科技领域,商汤人工智能大装置为大模型企业提