Java Stream:让你的集合操作如丝般顺滑

2024-01-08 15:44

本文主要是介绍Java Stream:让你的集合操作如丝般顺滑,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Stream API是一种基于流(stream)的API,它提供了一种简洁而高效的处理集合和数组的方法。使用Stream API可以将集合和数组中的数据进行过滤、转换和聚合等操作,同时避免了使用传统的for循环或迭代器的冗长代码.

kotlin 可参考Kotlin Collection KTX:让你的集合操作如丝般顺滑

为什么使用stream API

  1. java 开发中想要使用kotlin 的集合操作方式,可以使用它。
  2. 简洁高效:Stream API提供了一种简洁而高效的处理集合和数组的方法,代码更加简洁易读,同时也提高了执行效率。
  3. 并行处理:Stream API可以实现并行处理,将数据集分成多个块,并且每个块可以在不同的线程中进行处理,从而加快处理速度。
  4. 延迟执行:Stream API中的操作是延迟执行的,只有在需要返回结果时才会执行,这样可以减少不必要的计算,提高效率。
  5. 可组合性:Stream API中的多个操作可以组合在一起使用,形成一个完整的处理流程,可以减少中间变量的使用,从而使代码更加简洁。

常用API介绍

  1. filter(Predicate predicate) 对流中的元素进行筛选,只保留符合条件的元素。
  2. map(Function<T, R> mapper) 对流中的元素进行映射操作,将每个元素映射成一个新的元素。
  3. flatMap(Function<T, Stream<R>> mapper) 对流中的每个元素进行映射操作,将每个元素映射成一个新的流,并将多个流合并成一个流。
  4. distinct() 去除流中的重复元素。
  5. sorted() 对流中的元素进行排序操作。
  6. limit(long maxSize) 对流进行截取操作,只保留前n个元素。
  7. skip(long n) 对流进行跳过操作,跳过前n个元素。
  8. forEach(Consumer action) 对流中的每个元素执行指定的操作。
  9. reduce(T identity, BinaryOperator accumulator) 对流中的元素进行累加操作,并返回累加结果。
  10. collect(Collector<T, A, R> collector) 将流中的元素收集成一个集合或其他数据结构。
  11. anyMatch(Predicate predicate) 判断流中是否有任意一个元素符合指定条件。
  12. allMatch(Predicate predicate) 判断流中是否所有元素都符合指定条件。
  13. noneMatch(Predicate predicate) 判断流中是否没有任何一个元素符合指定条件。
  14. findFirst() 返回流中的第一个元素。
  15. findAny() 返回流中的任意一个元素。
  16. count() 返回流中元素的总数。
  17. max(Comparator comparator) 返回流中的最大值。
  18. min(Comparator comparator) 返回流中的最小值。
  19. reduce(BinaryOperator accumulator) 对流中的元素进行累加操作,并返回累加结果。
  20. toArray(IntFunction<T[]> generator) 将流中的元素转换成一个数组。

此外,Java Stream API还提供了一些中间操作,比如peek()和sorted()等,这些操作可以在Stream中进行链式调用。其中,peek()方法可以用来对Stream中的每个元素执行一些副作用操作

常用API Demo

  • filter(Predicate predicate) 过滤集合中符合条件的元素,并返回一个新的流。
List<Integer> numbers = Arrays.asList(1, 2, 3, 4, 5);
List<Integer> evenNumbers = numbers.stream().filter(n -> n % 2 == 0).collect(Collectors.toList());
System.out.println(evenNumbers); // 输出 [2, 4]
  • map(Function<T, R> mapper) 将集合中的每个元素映射成另一个元素,并返回一个新的流
List<String> names = Arrays.asList("Alice", "Bob", "Charlie");
List<Integer> nameLengths = names.stream().map(String::length).collect(Collectors.toList());
System.out.println(nameLengths); // 输出 [5, 3, 7]
  • flatMap(Function<T, Stream> mapper) 将集合中的每个元素映射成一个流,将所有流中的元素合并成一个新的流
List<List<Integer>> numbers = Arrays.asList(Arrays.asList(1, 2, 3),Arrays.asList(4, 5, 6),Arrays.asList(7, 8, 9)
);
List<Integer> allNumbers = numbers.stream().flatMap(Collection::stream).collect(Collectors.toList());
System.out.println(allNumbers); // 输出 [1, 2, 3, 4, 5, 6, 7, 8, 9]
  • distinct() 去除流中重复的元素,并返回一个新的流。
List<Integer> numbers = Arrays.asList(1, 2, 3, 1, 2, 3);
List<Integer> distinctNumbers = numbers.stream().distinct().collect(Collectors.toList());
System.out.println(distinctNumbers); // 输出 [1, 2, 3]
  • sorted() 对流中的元素进行排序,并返回一个新的流。
List<Integer> numbers = Arrays.asList(3, 1, 4, 1, 5, 9, 2, 6, 5);
List<Integer> sortedNumbers = numbers.stream().sorted().collect(Collectors.toList());
System.out.println(sortedNumbers); // 输出 [1, 1, 2, 3, 4, 5, 5, 6, 9]
  • limit(long maxSize) 截取流中前面的指定数量元素,并返回一个新的流。
List<Integer> numbers = Arrays.asList(1, 2, 3, 4, 5);
List<Integer> limitedNumbers = numbers.stream().limit(3).collect(Collectors.toList());
System.out.println(limitedNumbers); // 输出 [1, 2, 3]
  • skip(long n) 跳过流中前面的指定数量元素,并返回一个新的流。
List<Integer> numbers = Arrays.asList(1, 2, 3, 4, 5);
List<Integer> skippedNumbers = numbers.stream().skip(2).collect(Collectors.toList());
System.out.println(skippedNumbers); // 输出 [3, 4, 5]
  • forEach(Consumer action) 对流中的每个元素执行指定的操作。
List<String> names = Arrays.asList("Alice", "Bob", "Charlie");
names.stream().forEach(System.out::println);
// 输出
// Alice
// Bob
// Charlie
  • reduce(T identity, BinaryOperator accumulator) 对流中的元素进行累加操作,并返回累加结果。
List<Integer> numbers = Arrays.asList(1, 2, 3, 4, 5);
int sum = numbers.stream().reduce(0, (a, b) -> a + b);
System.out.println(sum); // 输出 15
  • collect(Collector<T, A, R> collector) 将流中的元素收集成一个集合或其他数据结构。
List<String> names = Arrays.asList("Alice", "Bob", "Charlie");
String concatenatedNames = names.stream().collect(Collectors.joining(", "));
System.out.println(concatenatedNames); // 输出 "Alice, Bob, Charlie"

使用须知

  1. 需要根据实际情况选择适合的API方法。在使用Java Stream API时,应该根据具体的需求选择适合的API方法。因为Java Stream API提供了很多API方法,不同的API方法适用于不同的场景。
  2. 确定好中间操作和终端操作。Java Stream API中的操作可以分为中间操作和终端操作。中间操作是指可以在Stream中进行链式调用的操作,例如filter()和map()等;终端操作是指对Stream进行终止操作的操作,例如forEach()和collect()等。在使用Java Stream API时,需要确定好中间操作和终端操作,确保Stream能够正常工作。
  3. 避免使用过于复杂的操作。尽管Java Stream API提供了很多API方法,但是过于复杂的操作会影响代码的可读性和可维护性。因此,应该避免使用过于复杂的操作。
  4. 对于大规模数据的处理,建议使用并行流。Java Stream API提供了并行流(parallel stream)的支持,可以将一个Stream分成多个子Stream进行并行处理,提高处理效率。对于大规模数据的处理,建议使用并行流。

文中的APi均为常用型API,具体可以看Stream提供的API与注释。

这篇关于Java Stream:让你的集合操作如丝般顺滑的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/583963

相关文章

Spring Boot中WebSocket常用使用方法详解

《SpringBoot中WebSocket常用使用方法详解》本文从WebSocket的基础概念出发,详细介绍了SpringBoot集成WebSocket的步骤,并重点讲解了常用的使用方法,包括简单消... 目录一、WebSocket基础概念1.1 什么是WebSocket1.2 WebSocket与HTTP

SpringBoot+Docker+Graylog 如何让错误自动报警

《SpringBoot+Docker+Graylog如何让错误自动报警》SpringBoot默认使用SLF4J与Logback,支持多日志级别和配置方式,可输出到控制台、文件及远程服务器,集成ELK... 目录01 Spring Boot 默认日志框架解析02 Spring Boot 日志级别详解03 Sp

java中反射Reflection的4个作用详解

《java中反射Reflection的4个作用详解》反射Reflection是Java等编程语言中的一个重要特性,它允许程序在运行时进行自我检查和对内部成员(如字段、方法、类等)的操作,本文将详细介绍... 目录作用1、在运行时判断任意一个对象所属的类作用2、在运行时构造任意一个类的对象作用3、在运行时判断

java如何解压zip压缩包

《java如何解压zip压缩包》:本文主要介绍java如何解压zip压缩包问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java解压zip压缩包实例代码结果如下总结java解压zip压缩包坐在旁边的小伙伴问我怎么用 java 将服务器上的压缩文件解压出来,

SpringBoot中SM2公钥加密、私钥解密的实现示例详解

《SpringBoot中SM2公钥加密、私钥解密的实现示例详解》本文介绍了如何在SpringBoot项目中实现SM2公钥加密和私钥解密的功能,通过使用Hutool库和BouncyCastle依赖,简化... 目录一、前言1、加密信息(示例)2、加密结果(示例)二、实现代码1、yml文件配置2、创建SM2工具

Spring WebFlux 与 WebClient 使用指南及最佳实践

《SpringWebFlux与WebClient使用指南及最佳实践》WebClient是SpringWebFlux模块提供的非阻塞、响应式HTTP客户端,基于ProjectReactor实现,... 目录Spring WebFlux 与 WebClient 使用指南1. WebClient 概述2. 核心依

Spring Boot @RestControllerAdvice全局异常处理最佳实践

《SpringBoot@RestControllerAdvice全局异常处理最佳实践》本文详解SpringBoot中通过@RestControllerAdvice实现全局异常处理,强调代码复用、统... 目录前言一、为什么要使用全局异常处理?二、核心注解解析1. @RestControllerAdvice2

Spring IoC 容器的使用详解(最新整理)

《SpringIoC容器的使用详解(最新整理)》文章介绍了Spring框架中的应用分层思想与IoC容器原理,通过分层解耦业务逻辑、数据访问等模块,IoC容器利用@Component注解管理Bean... 目录1. 应用分层2. IoC 的介绍3. IoC 容器的使用3.1. bean 的存储3.2. 方法注

Spring事务传播机制最佳实践

《Spring事务传播机制最佳实践》Spring的事务传播机制为我们提供了优雅的解决方案,本文将带您深入理解这一机制,掌握不同场景下的最佳实践,感兴趣的朋友一起看看吧... 目录1. 什么是事务传播行为2. Spring支持的七种事务传播行为2.1 REQUIRED(默认)2.2 SUPPORTS2

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.