PyTorch 简单易懂的 Embedding 和 EmbeddingBag - 解析与实践

2024-01-08 11:20

本文主要是介绍PyTorch 简单易懂的 Embedding 和 EmbeddingBag - 解析与实践,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

torch.nn子模块Sparse Layers详解

nn.Embedding

用途

主要参数

注意事项

使用示例

从预训练权重创建嵌入

nn.EmbeddingBag

功能和用途

主要参数

使用示例

从预训练权重创建

总结


torch.nn子模块Sparse Layers详解

nn.Embedding

torch.nn.Embedding 是 PyTorch 中一个重要的模块,用于创建一个简单的查找表,它存储固定字典和大小的嵌入(embeddings)。这个模块通常用于存储单词嵌入并使用索引检索它们。接下来,我将详细解释 Embedding 模块的用途、用法、特点以及如何使用它。

用途

  • 单词嵌入:在自然语言处理中,Embedding 模块用于将单词(或其他类型的标记)映射到一个高维空间,其中相似的单词在嵌入空间中彼此靠近。
  • 特征表示:在非自然语言处理任务中,嵌入可以用于任何类型的分类特征的密集表示。

主要参数

  • num_embeddings(int):嵌入字典的大小。
  • embedding_dim(int):每个嵌入向量的大小。
  • padding_idx(int,可选):如果指定,padding_idx 处的嵌入不会在训练中更新。
  • max_norm(float,可选):如果指定,将重新归一化超过此范数的嵌入向量。
  • norm_type(float,可选):用于max_norm选项的p-范数的p值,默认为2。
  • scale_grad_by_freq(bool,可选):如果为True,将按单词在批次中的频率的倒数来缩放梯度。
  • sparse(bool,可选):如果为True,权重矩阵的梯度将是一个稀疏张量。

注意事项

  • 当使用max_norm参数时,Embedding的前向方法会就地修改权重张量。如果需要对Embedding.weight进行梯度计算,则在调用前向方法前,需要在max_norm不为None时克隆它。
  • 仅有少数优化器支持稀疏梯度。

使用示例

import torch
import torch.nn as nn# 创建一个包含10个大小为3的嵌入的Embedding模块
embedding = nn.Embedding(10, 3)# 一个包含4个索引的2个样本的批次
input = torch.LongTensor([[1, 2, 4, 5], [4, 3, 2, 9]])# 通过Embedding模块获取嵌入
output = embedding(input)

此示例创建了一个嵌入字典大小为10、每个嵌入维度为3的 Embedding 模块。然后它接受一个包含索引的输入张量,并返回对应的嵌入向量。

从预训练权重创建嵌入

还可以使用from_pretrained类方法从预先训练的权重创建Embedding实例:

# 预训练的权重
weight = torch.FloatTensor([[1, 2.3, 3], [4, 5.1, 6.3]])# 从预训练权重创建Embedding
embedding = nn.Embedding.from_pretrained(weight)# 获取索引1的嵌入
input = torch.LongTensor([1])
output = embedding(input)

在这个示例中,Embedding 模块是从一个给定的预训练权重张量创建的。这种方法在迁移学习或使用预先训练好的嵌入时非常有用。

nn.EmbeddingBag

torch.nn.EmbeddingBag 是 PyTorch 中一个高效的模块,用于计算“bags”(即序列或集合)的嵌入的总和或平均值,而无需实例化中间的嵌入。这个模块特别适用于处理具有不同长度的序列,如在自然语言处理任务中处理不同长度的句子或文档。下面我将详细介绍 EmbeddingBag 的功能、用法以及特点。

功能和用途

  • 高效计算EmbeddingBag 直接计算整个包的总和或平均值,比逐个嵌入后再求和或取平均更加高效。
  • 支持不同聚合方式:可以选择 "sum", "mean" 或 "max" 模式来聚合每个包中的嵌入。
  • 支持加权聚合EmbeddingBag 还支持为每个样本指定权重,在 "sum" 模式下进行加权求和。

主要参数

  • num_embeddings(int):嵌入字典的大小。
  • embedding_dim(int):每个嵌入向量的大小。
  • max_norm(float,可选):如果给定,将重新规范化超过此范数的嵌入向量。
  • mode(str,可选):聚合模式,可以是 "sum"、"mean" 或 "max"。
  • sparse(bool,可选):如果为True,权重矩阵的梯度将是一个稀疏张量。
  • padding_idx(int,可选):如果指定,padding_idx 处的嵌入将不会在训练中更新。

使用示例

import torch
import torch.nn as nn# 创建一个包含10个大小为3的嵌入的EmbeddingBag模块
embedding_bag = nn.EmbeddingBag(10, 3, mode='mean')# 一个示例包含4个索引的输入
input = torch.tensor([1, 2, 4, 5, 4, 3, 2, 9], dtype=torch.long)# 指定每个包的开始索引
offsets = torch.tensor([0, 4], dtype=torch.long)# 通过EmbeddingBag模块获取嵌入
output = embedding_bag(input, offsets)

在这个示例中,创建了一个嵌入字典大小为10、每个嵌入维度为3的 EmbeddingBag 模块,并设置为 "mean" 模式。输入是一个索引序列,offsets 指定了每个包的开始位置。EmbeddingBag 会计算每个包的平均嵌入向量。

从预训练权重创建

EmbeddingBag 也可以从预训练的权重创建:

# 预训练的权重
weight = torch.FloatTensor([[1, 2.3, 3], [4, 5.1, 6.3]])# 从预训练权重创建EmbeddingBag
embedding_bag = nn.EmbeddingBag.from_pretrained(weight)# 获取索引1的嵌入
input = torch.LongTensor([[1, 0]])
output = embedding_bag(input)

 这种方法在需要使用预先训练好的嵌入或在迁移学习中非常有用。EmbeddingBag 通过高效地处理不同长度的序列数据,在自然语言处理等领域中发挥着重要作用。

总结

 本篇博客探讨了 PyTorch 中的 nn.Embeddingnn.EmbeddingBag 两个关键模块,它们是处理和表示离散数据特征的强大工具。nn.Embedding 提供了一种有效的方式来将单词或其他类型的标记映射到高维空间中,而 nn.EmbeddingBag 以其独特的方式处理变长序列,通过聚合嵌入来提高计算效率。这两个模块不仅在自然语言处理中发挥关键作用,也适用于其他需要稠密特征表示的任务。此外,这些模块支持从预训练权重初始化,使其在迁移学习和复杂模型训练中极为重要。综上所述,nn.Embeddingnn.EmbeddingBag 是理解和应用 PyTorch 中嵌入层的基础。

这篇关于PyTorch 简单易懂的 Embedding 和 EmbeddingBag - 解析与实践的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/583294

相关文章

PostgreSQL的扩展dict_int应用案例解析

《PostgreSQL的扩展dict_int应用案例解析》dict_int扩展为PostgreSQL提供了专业的整数文本处理能力,特别适合需要精确处理数字内容的搜索场景,本文给大家介绍PostgreS... 目录PostgreSQL的扩展dict_int一、扩展概述二、核心功能三、安装与启用四、字典配置方法

Spring WebFlux 与 WebClient 使用指南及最佳实践

《SpringWebFlux与WebClient使用指南及最佳实践》WebClient是SpringWebFlux模块提供的非阻塞、响应式HTTP客户端,基于ProjectReactor实现,... 目录Spring WebFlux 与 WebClient 使用指南1. WebClient 概述2. 核心依

MyBatis-Plus 中 nested() 与 and() 方法详解(最佳实践场景)

《MyBatis-Plus中nested()与and()方法详解(最佳实践场景)》在MyBatis-Plus的条件构造器中,nested()和and()都是用于构建复杂查询条件的关键方法,但... 目录MyBATis-Plus 中nested()与and()方法详解一、核心区别对比二、方法详解1.and()

Spring Boot @RestControllerAdvice全局异常处理最佳实践

《SpringBoot@RestControllerAdvice全局异常处理最佳实践》本文详解SpringBoot中通过@RestControllerAdvice实现全局异常处理,强调代码复用、统... 目录前言一、为什么要使用全局异常处理?二、核心注解解析1. @RestControllerAdvice2

Spring事务传播机制最佳实践

《Spring事务传播机制最佳实践》Spring的事务传播机制为我们提供了优雅的解决方案,本文将带您深入理解这一机制,掌握不同场景下的最佳实践,感兴趣的朋友一起看看吧... 目录1. 什么是事务传播行为2. Spring支持的七种事务传播行为2.1 REQUIRED(默认)2.2 SUPPORTS2

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

MySQL 中 ROW_NUMBER() 函数最佳实践

《MySQL中ROW_NUMBER()函数最佳实践》MySQL中ROW_NUMBER()函数,作为窗口函数为每行分配唯一连续序号,区别于RANK()和DENSE_RANK(),特别适合分页、去重... 目录mysql 中 ROW_NUMBER() 函数详解一、基础语法二、核心特点三、典型应用场景1. 数据分

使用Python绘制3D堆叠条形图全解析

《使用Python绘制3D堆叠条形图全解析》在数据可视化的工具箱里,3D图表总能带来眼前一亮的效果,本文就来和大家聊聊如何使用Python实现绘制3D堆叠条形图,感兴趣的小伙伴可以了解下... 目录为什么选择 3D 堆叠条形图代码实现:从数据到 3D 世界的搭建核心代码逐行解析细节优化应用场景:3D 堆叠图