Four steps to master machine learning with python (including free books amp;amp; resources)

本文主要是介绍Four steps to master machine learning with python (including free books amp;amp; resources),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

To understand and apply machine learning techniques you have to learn Python or R. Both are programming languages similar to C, Java or PHP. However, since Python and R are much younger and “farer away” from the CPU, they are easier. The advantage of Python is that it can be adopted to many other problems than R, which is only used for handling data, analysing it with e.g. machine learning and statistic algorythms and ploting it in nice graphs. Because Python has a broader distribution (hosting websites with Jango, natural language proecssing, accessing APIs of websites such as Twitter, Linkedin etc.) and resembles more classical programming languages like C Python is more popular.

The four steps of learning machine learning in python

  1. First you have to learn the basics of Python using books, courses and videos.
  2. Then you have to master the different moduls such as Pandas, Numpy, Matplotlib and Natural Language Processing (NLP) in order to handle, clean, plot and understand data.
  3. Afterwards you have to able to scrap data from the web which is either done by using APIs of websites or the web-scraping moduls Beautiful Soup. Web scraping allows you to collect data which you feed into you machine learning algorithms.
  4. In the last step you have to learn machine learning (ML) tools like Scikit-Learn or implement ML-algorithm from scratch.

1. Getting started with Python:

And easy and fast way to learn Python is to register at codecademy.com and imediately start to code and learn the basics of python. A classic is the website learnpythonthehardway which is referenced by a lot of python programmers. A good PDF is a byte of python. A list of python resources for beginners is also provided by the python community. A book from O’Reilley is Think Python, which can be downloaded for free from here. A last resource is Introduction to Python for Econometrics, Statistics and Data Analysis which also covers the basics of Python.

2. Important Modules for machine learning

The most important modules for machine learning are NumPy, Pandas, Matplotlib and IPython. A book covering a couple of these modules is Data Analysis with Open Source Tools.  The free book Introduction to Python for Econometrics, Statistics and Data Analysis from 1. also covers Numpy, Pandas, matplotlib and IPython. Another resource is Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython, which also covers the most important modules. Her are other free Numpy (Numerical Python, Numpy Userguide, Guide to NumPy), Pandas (Pandas, Powerful Python Data Analysis Toolkit, Practical Business Python, Intros to Pandas Data Structure) and Matplotlib books.

Other resources:

  • 10 minutes to Pandas
  • Pandas for machine learning
  • 100 NumPy exercises

3. Mining and scraping the data from websites and through APIs

Once you have understood the basics of python and the most important modules you have to learn how to collect data from different sources. This technique is also called web scrapping. Classic sources are text from websites, textual data through APIs to access websites such as twitter or linkedin. Good books on web scraping are Mining the Social Web (free book!), Web Scraping with Python and Web Scraping with Python: Collecting Data from the Modern Web. 

Lastly this textual data has to be transformed into numerical data, which is done with natural language processing techniques covered by Natural language processing with Python and Natural Language Annotation for Machine Learning. Other data are images and videos, which can be analysed using computer vision techniques: Programming Computer Vision with Python, Programming Computer Vision with Python: Tools and algorithms for analyzing images  and Practical Python and OpenCV are typical resources to analyse images.

Educational and interesting examples of what you can already do using basic python commands and web scraping techniques can be found in these examples:

  • Mini-Tutorial: Saving Tweets to a Database with Python
  • Web Scraping Indeed for Key Data Science Job Skills
  • Case Study: Sentiment Analysis On Movie Reviews
  • First Web Scraper
  • Sentiment Analysis of Emails
  • Simple Text Classification
  • Basic Sentiment Analysis with Python
  • Twitter sentiment analysis using Python and NLTK
  • Second Try: Sentiment Analysis in Python
  • Natural Language Processing in a Kaggle Competition for Movie Reviews

4. Machine learning with Python

Machine learning can be divided into four groups. Classification, clustering, regression and dimensionalty reduction.

drop_shadows_background2

 

Classification can also be called supervised learning and helps one to classify an image in order to identify a symbol or face in the image, or to classify a user from its profile and to grant him different credit scores. Clustering happens under unsupervised learning and allows the user to identify groups/clusters within its data. Regression permits to estimate a value from a paramter set and can be used to predict the best price for a house, apartment or car.

All important modules, packages and techniques to learn Machine Learning in Python, C, Scala, Java, Julia, MATLAB, Go, R and Ruby. Books about machine learning in python:

I especially recommend the book Machine learning in action. Although a bit short it is probably a classic in machine learning due to its age Programming Collective Intelligence. These two books let you build machine learning algorithms from scratch.

Most recent publications about machine learning are base on the Python module scikit-learn. It makes machine learning very easy since all the algorithm are already implemented. The only thing you do is to tell python which ML-technique should be used to analyse the data.

A free scikit-learn tutorial can be found on the official scikit-learn website. Other posts are be found here:

  • Introduction to Machine Learning with Python and Scikit-Learn
  • Data Science in Python
  • Machine Learning for Predicting Bad Loans
  • A Generic Architecture for Text Classification with Machine Learning
  • Using Python and AI to predict types of wine
  • Advice for applying Machine Learning
  • Predicting customer churn with scikit-learn
  • Mapping Your Music Collection
  • Data Science in Python
  • Case Study: Sentiment Analysis on Movie Reviews
  • Document Clustering with Python
  • Five most popular similarity measures implementation in python
  • Case Study: Sentiment Analysis on Movie Reviews
  • Will it Python?
  • Text Processing in Machine Learning
  • Hacking an epic NHL goal celebration with a hue light show and real-time machine learning
  • Vancouver Room Prices
  • Exploring and Predicting University Faculty Salaries
  • Predicting Airline Delays

Books about machine learning and the module scikit-learn in Python are:

  • Collection of books on reddit
  • Building Machine Learning Systems with Python
  • Building Machine Learning Systems with Python, 2nd Edition
  • Learning scikit-learn: Machine Learning in Python
  • Machine Learning Algorithmic Perspective
  • Data Science from Scratch – First Principles with Python
  • Machine Learning in Python

Books which are published in the coming months are:

  • Introduction to Machine Learning with Python
  • Thoughtful Machine Learning with Python: A Test-Driven Approach

Courses and blogs about Machine learning

You want to earn a degree, take an online course or attand a real workshop, camp or university course? Here are some links: Collection of links to online education in analytics, Big Data, Data Mining, and Data Science. Coursera course in machine learning and Data Analyst Nanodegree from Udacity are other recommended online courses. List of frequently updated blogs about machine learning.

A great youtube video is this class from Jake Vanderplas, Olivier Grisel about Exploring Machine Learning with Scikit-learn!

Theory of Machine Learning

Want to learn the theory of machine learning? The Elements of statistical Learning and Introduction to Statistical Learning are often cited classics. Other books are Introduction to machine learning and A Course in Machine Learning. The links contain free PDF, so you don’t have to pay them! Don’t want to read this? Watch 15 hours theory of machine learning!

原文地址:http://lernpython.de/four-steps-to-master-machine-learning-with-python-including-free-books-resources

翻译底子:   http://python.jobbole.com/84326/

这篇关于Four steps to master machine learning with python (including free books amp;amp; resources)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/581840

相关文章

使用Python删除Excel中的行列和单元格示例详解

《使用Python删除Excel中的行列和单元格示例详解》在处理Excel数据时,删除不需要的行、列或单元格是一项常见且必要的操作,本文将使用Python脚本实现对Excel表格的高效自动化处理,感兴... 目录开发环境准备使用 python 删除 Excphpel 表格中的行删除特定行删除空白行删除含指定

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

Python办公自动化实战之打造智能邮件发送工具

《Python办公自动化实战之打造智能邮件发送工具》在数字化办公场景中,邮件自动化是提升工作效率的关键技能,本文将演示如何使用Python的smtplib和email库构建一个支持图文混排,多附件,多... 目录前言一、基础配置:搭建邮件发送框架1.1 邮箱服务准备1.2 核心库导入1.3 基础发送函数二、

Python包管理工具pip的升级指南

《Python包管理工具pip的升级指南》本文全面探讨Python包管理工具pip的升级策略,从基础升级方法到高级技巧,涵盖不同操作系统环境下的最佳实践,我们将深入分析pip的工作原理,介绍多种升级方... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python中反转字符串的常见方法小结

《Python中反转字符串的常见方法小结》在Python中,字符串对象没有内置的反转方法,然而,在实际开发中,我们经常会遇到需要反转字符串的场景,比如处理回文字符串、文本加密等,因此,掌握如何在Pyt... 目录python中反转字符串的方法技术背景实现步骤1. 使用切片2. 使用 reversed() 函

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert

使用Docker构建Python Flask程序的详细教程

《使用Docker构建PythonFlask程序的详细教程》在当今的软件开发领域,容器化技术正变得越来越流行,而Docker无疑是其中的佼佼者,本文我们就来聊聊如何使用Docker构建一个简单的Py... 目录引言一、准备工作二、创建 Flask 应用程序三、创建 dockerfile四、构建 Docker

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Python使用pip工具实现包自动更新的多种方法

《Python使用pip工具实现包自动更新的多种方法》本文深入探讨了使用Python的pip工具实现包自动更新的各种方法和技术,我们将从基础概念开始,逐步介绍手动更新方法、自动化脚本编写、结合CI/C... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核