SpikingJelly笔记之泊松编码

2024-01-07 17:04

本文主要是介绍SpikingJelly笔记之泊松编码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 前言
  • 一、泊松编码的原理
  • 二、生成符合泊松分布的脉冲序列
  • 三、SpikingJelly中的泊松编码
  • 四、Lena图像的泊松编码与还原
    • 1.原始图像
    • 2.图像编码
    • 3.图像还原
  • 总结


前言

记录SpikingJelly中泊松编码的使用方法,对图像数据进行编码与还原


一、泊松编码的原理

基于频率的编码方式,将输入编码为发放次数分布符合泊松过程的脉冲序列
P ( X = k ) = λ k k ! e − λ P(X=k)=\frac{{\lambda}^{k}}{k!}{e}^{-\lambda} P(X=k)=k!λkeλ
均值λ:时间T内发放的脉冲数目
根据输入决定每个时间步发放脉冲的概率[0,1],各时间步相互独立

二、生成符合泊松分布的脉冲序列

out_spike = torch.rand_like(x).le(x).to(x)

(1)生成与输入形状相同的标准正态分布随机值
(2)将生成值与输入[0,1]比较,<=为1,>为0
(3)将比较生成的布尔值转化为与输入相同的数据类型

三、SpikingJelly中的泊松编码

from spikingjelly.activation_based import encoding
pe = encoding.PoissonEncoder() # 泊松编码器
# 输出脉冲序列,T:时间步长,w:图像宽度,h:图像高度
out_spike = torch.zeros((T, w, h), dtype=torch.bool)
# 按时间步根据输入生成脉冲序列,相互独立
for t in range(T):out_spike[t] = pe(x) # x需要归一化[0,1]

四、Lena图像的泊松编码与还原

1.原始图像

读取、展示原始图像

####################泊松编码####################
from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
import torch
from spikingjelly.activation_based import encoding
from spikingjelly import visualizing
####################读取图像####################
img = np.array(Image.open('../dataset/lena.bmp')) / 255
x = torch.from_numpy(img)
w, h = x.shape
plt.figure()
plt.imshow(x, cmap='gray')
plt.axis('off')

2.图像编码

输出泊松编码后每个时间步的图像

####################泊松编码####################
T = 9 # 时间步长
pe = encoding.PoissonEncoder()
out_spike = torch.zeros((T, w, h), dtype=torch.bool)
for t in range(T):out_spike[t] = pe(x)
# 每个时间步的编码图像
nrows, ncols, space = 3, 3, 30
figsize, dpi = (6, 4), 200
visualizing.plot_2d_feature_map(x3d=out_spike.float().numpy(),nrows=nrows,ncols=ncols,space=space,title='PoissonEncoder',figsize=figsize,dpi=dpi)

3.图像还原

按时间步累加可重构出原始图像,时间步T越长,累加结果越接近原始图像

####################编码结果累加####################
T = 100 # 时间步长
pe = encoding.PoissonEncoder()
out_spike = torch.zeros((w, h), dtype=torch.float)
out_spikes = torch.zeros((5, w, h), dtype=torch.float)
# 按时间步累加
show_step = 20
for t in range(T):out_spike += pe(x)if(t % show_step == 0):out_spikes[t//show_step] = out_spike
# 归一化
for i in range(T//show_step):out_spikes[i] = (out_spikes[i]-out_spikes[i].min()) / (out_spikes[i].max()-out_spikes[i].min())
# 按时间步累加的编码图像
nrows, ncols, space = 1, T//show_step, 30
figsize, dpi = (6, 4), 200
visualizing.plot_2d_feature_map(x3d=out_spikes.numpy(),nrows=nrows,ncols=ncols,space=space,title='PoissonEncoder',figsize=figsize,dpi=dpi)
plt.axis('off')
plt.show()


总结

泊松编码将输入转化为脉冲序列,是一种基于频率编码的方式
较大的输入对应于较高的脉冲频率
泊松编码的输入需要归一化[0,1]
使用spikingjelly.visualizing可以方便作图

参考:
[1] 时间驱动:编码器
[2]【Spikingjelly】SNN框架教程的代码解读_3

这篇关于SpikingJelly笔记之泊松编码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/580638

相关文章

利用Python快速搭建Markdown笔记发布系统

《利用Python快速搭建Markdown笔记发布系统》这篇文章主要为大家详细介绍了使用Python生态的成熟工具,在30分钟内搭建一个支持Markdown渲染、分类标签、全文搜索的私有化知识发布系统... 目录引言:为什么要自建知识博客一、技术选型:极简主义开发栈二、系统架构设计三、核心代码实现(分步解析

Python使用自带的base64库进行base64编码和解码

《Python使用自带的base64库进行base64编码和解码》在Python中,处理数据的编码和解码是数据传输和存储中非常普遍的需求,其中,Base64是一种常用的编码方案,本文我将详细介绍如何使... 目录引言使用python的base64库进行编码和解码编码函数解码函数Base64编码的应用场景注意

VSCode中C/C++编码乱码问题的两种解决方法

《VSCode中C/C++编码乱码问题的两种解决方法》在中国地区,Windows系统中的cmd和PowerShell默认编码是GBK,但VSCode默认使用UTF-8编码,这种编码不一致会导致在VSC... 目录问题方法一:通过 Code Runner 插件调整编码配置步骤方法二:在 PowerShell

Python如何实现读取csv文件时忽略文件的编码格式

《Python如何实现读取csv文件时忽略文件的编码格式》我们再日常读取csv文件的时候经常会发现csv文件的格式有多种,所以这篇文章为大家介绍了Python如何实现读取csv文件时忽略文件的编码格式... 目录1、背景介绍2、库的安装3、核心代码4、完整代码1、背景介绍我们再日常读取csv文件的时候经常

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

C++ | Leetcode C++题解之第393题UTF-8编码验证

题目: 题解: class Solution {public:static const int MASK1 = 1 << 7;static const int MASK2 = (1 << 7) + (1 << 6);bool isValid(int num) {return (num & MASK2) == MASK1;}int getBytes(int num) {if ((num &

论文阅读笔记: Segment Anything

文章目录 Segment Anything摘要引言任务模型数据引擎数据集负责任的人工智能 Segment Anything Model图像编码器提示编码器mask解码器解决歧义损失和训练 Segment Anything 论文地址: https://arxiv.org/abs/2304.02643 代码地址:https://github.com/facebookresear

C语言 | Leetcode C语言题解之第393题UTF-8编码验证

题目: 题解: static const int MASK1 = 1 << 7;static const int MASK2 = (1 << 7) + (1 << 6);bool isValid(int num) {return (num & MASK2) == MASK1;}int getBytes(int num) {if ((num & MASK1) == 0) {return

数学建模笔记—— 非线性规划

数学建模笔记—— 非线性规划 非线性规划1. 模型原理1.1 非线性规划的标准型1.2 非线性规划求解的Matlab函数 2. 典型例题3. matlab代码求解3.1 例1 一个简单示例3.2 例2 选址问题1. 第一问 线性规划2. 第二问 非线性规划 非线性规划 非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。2