Plotly学习记录 1

2024-01-07 15:50
文章标签 学习 记录 plotly

本文主要是介绍Plotly学习记录 1,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

0. 古木阴中系短篷

    一个星期加班加点的,下篇论文的准备工作基本做好了。但是错过了七月份的一个会议,八月的会是没有检索的,自然没有投的必要了。所以写论文的工作暂时放一下。

    最近入手了一本4月出版的《Python数据分析:基于Plotly的动态可视化绘图》。在深度学习论文中实在需要大量好看的图表了,可视化展示可以说是论文第一眼看上去,能不能出彩的重中之重了。客观来讲,如果总是先导出jason格式或者CSV数据再用第三方工具如Matlab来绘制可能会有些麻烦(虽然这是我最熟悉也最常用的方法,图表样式等等都是后期靠自己的论文审美绘制);而常用的Python绘图库Matplotlib还是有一些不方便,后续会结合书上的讲解做一个详细的说明和搬运。在写一个index界面,但是东西太多了没弄完....实在弄着太累了。对论文图表帮助很大。

注:更新,为方便学习Plotly(安利~),代码含图书目录已经上传至百度云盘。链接:https://pan.baidu.com/s/15P7NJGioPwRST1TbGVqVFA,密码:fove。


 图0 未完成的图书index.html

    Plotly是一个非常优秀的顶级绘图模块,但在国内知名度不是很高,导致网上缺少一些对Plotly这个绘图库的教程。但Plotly是以后一定肯定确定会火起来的,因为真的很符合论文审美,关键是改数据太方便了(这个可能是关键原因吧哈哈哈,后面会有解释)。

    秋涵喵的博客会跟进一些对这本书的学习内容。今天就从Plotly的简介、第一次使用Plotly绘制图形这两方面入手吧。

1. 杖藜扶我过桥东

    首先聊一聊最经典和广泛的Python可视化绘图库Matplotlib。Matplot是仿Matlab风格的绘图库,做的是Matlab的封装,绘制风格和Matlab相似(书上是这么说,不过我觉得Matlab的图更偏古典更好看,而Matplot更圆润一些偏现代审美??)。下面用我之前论文中用Matlab画的图和平时代码用于可视化的Matplot图供大家对比一下。

图1 Matlab与Matplot风格比较

    然后呢,要总结一下Matplot的缺点,不然我们也不会买本书来看Plotly这个库怎么用吧。

    Matplot的主要缺点有两点:

  • Matplot是一个静态绘图模块。每次跑完程序出一张图,如果想改数据....就要改程序重新跑一边,再看看图合不合理。这不方便我们对论文中的可视化展示进行“微调”(emmmmm~)
  • 其次Matplot绘制的结果不是很方便跟别人分享,因为仅仅是一张静态的图片。

    综合上面两点,Plotly应运而生。它底层使用的plotly.js,是之前很火的D3.js、stack.gl和SVG,用JavaScript在网页上实现类似Matlab和Matplot的图像展示功能。而且内置的绘图模块更丰富,支持在线API接口调用和离线两种生成可视化的方式。

    可以说Plotly绘图模块库既有Matplot的强大与灵活,又有Seaborn统计绘图模块库的现代配色组合与优雅报表形式(这些优点都抵不过能让我们动态改数据,重要的事情说三遍)。相当于每次运行Plotly的程序,生成的不再是图片,而是弹出一个内嵌JS的脚本HTML文件,再对图片进行存储和进一步处理就比较方便了。下图列举书上的一个图表样例,可以说是非常美观和扁平了,而且很方便改数据

图2 一个由Plotly绘制的图和表

    书上列举了一些Plotly的有点如下:

  • Plotly本身是一款独立的Web版可视化工具,界面友好,提供强大的互动性操作
  • 基于现代的配色组合和图表形式,相比Matplot、R语言的图表,更加现代和绚丽。
  • 具有简单且强大的3D图表绘制功能,支持多种格式。
  • 对图形参数的修改十分简单、直观,便于初学者
  • 有Python、R、Matlab、Jupyter、Excel等多种版本的接口。
  • 与Pandas数据分析软件无缝集成,并提供了专门的Plotly绘图模块库,设计的图表非常吸引人,而且具有高度互动性,这得益于其完善的文档和简单的Python API,用户入门也很容易。
  • 目前,Plotly绘图模块库支持的图表格式如下:
  • 基本图表:20种
  • 统计和海运方式图:12种
  • 科学图表:21种
  • 财务图表:2种
  • 地图:8种
  • 3D图表:19种
  • 报告生成:4种
  • 连接数据库:7种
  • 拟合工具:3种
  • 流动图表:4种

 

图3 官网给出的一些示例

2. 沾衣欲湿杏花雨

    下面我们还是从这个库的使用、第一个Plotly绘图程序说起吧。

    首先需要安装Plotly绘图库,用pip install plotly或者pycharm的三方管理都可以下载到。

图3 安装Plotly库

    前面说了,Plotly支持在线和离线两种使用模式,所以我们需要去官网进行在线初始化。官网链接为:https://plot.ly/ 。先注册一个你的账号并进行登录,在右上角打开setting项后,在界面左边一栏找到API Keys这一项。获取你自己username对应的API Keys。

图4 在线初始化

    把Username和API Key记下来,创建一个.py程序如下,只需要运行一次就可以完成凭证设置:

# -*- coding: utf-8 -*-

import plotly

plotly.tools.set_credentials_file(username='XXXXX',api_key='XXXX')

    会在当前用户目录产生一个凭证文件.plotly/.credentials,这个就不用管了。我们开始绘制我们的第一个Plotly图像。

  • 在线方式
# -*- coding: utf-8 -*-

import plotly.plotly as py
from plotly.graph_objs import *

trace0 = Scatter(
    x=[1, 2, 3, 4],
    y=[10, 15, 13, 17]
)
trace1 = Scatter(
    x=[1, 2, 3, 4],
    y=[16, 5, 11, 9]
)
data = Data([trace0, trace1])

py.plot(data, filename = 'first_start')

效果如下图所示:

图5 产生的html内容

    HTML上有很多的脚本功能可以自行测试一下,可以说改数据是相当方便。例如单击右上角图例的trace0,就可以把蓝线隐去;滚动滑轮可以控制横纵坐标缩放比等等等等。

  • 离线方式

    没有太大的差别,只是调用时使用py.offline.plot()方法。不同于在线方式,在线方式是将你绘制的图形公开保存在官网上。而离线的方式允许在没有网络的情况下,在本地产生一个HTML文件。效果就不再展示了。

import plotly as py
from plotly.graph_objs import Scatter, Layout, Data

trace0 = Scatter(
    x=[1, 2, 3, 4],
    y=[10, 15, 13, 17]
)
trace1 = Scatter(
    x=[1, 2, 3, 4],
    y=[16, 5, 11, 9]
)
data = Data([trace0, trace1])

py.offline.plot(data, filename = 'first_offline_start.html')

3. 吹面不寒杨柳风

    关于第一章的学习就到这了,算是给大家强烈安利使用Plotly进行绘图。然后书上的代码在github上链接为:https://github.com/sunshe35/PythonPlotlyCodes 。最后再放几个炫酷的图表作为结束吧,之后学习了会继续更新关于Plotly的东西。

图6 一些示例

    我要先帮老师做一个类似下图的图书index了。

 

转载于:https://www.cnblogs.com/catallen/p/9268859.html

这篇关于Plotly学习记录 1的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/580458

相关文章

Servlet中配置和使用过滤器的步骤记录

《Servlet中配置和使用过滤器的步骤记录》:本文主要介绍在Servlet中配置和使用过滤器的方法,包括创建过滤器类、配置过滤器以及在Web应用中使用过滤器等步骤,文中通过代码介绍的非常详细,需... 目录创建过滤器类配置过滤器使用过滤器总结在Servlet中配置和使用过滤器主要包括创建过滤器类、配置过滤

正则表达式高级应用与性能优化记录

《正则表达式高级应用与性能优化记录》本文介绍了正则表达式的高级应用和性能优化技巧,包括文本拆分、合并、XML/HTML解析、数据分析、以及性能优化方法,通过这些技巧,可以更高效地利用正则表达式进行复杂... 目录第6章:正则表达式的高级应用6.1 模式匹配与文本处理6.1.1 文本拆分6.1.2 文本合并6

python与QT联合的详细步骤记录

《python与QT联合的详细步骤记录》:本文主要介绍python与QT联合的详细步骤,文章还展示了如何在Python中调用QT的.ui文件来实现GUI界面,并介绍了多窗口的应用,文中通过代码介绍... 目录一、文章简介二、安装pyqt5三、GUI页面设计四、python的使用python文件创建pytho

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学