修改嵌入式 ARM Linux 内核映像中的文件系统

2024-01-07 13:40

本文主要是介绍修改嵌入式 ARM Linux 内核映像中的文件系统,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

zImage 是编译内核后在 arch/arm/boot 目录下生成的一个已经压缩过的内核映像。通常我们不会使用编译生成的原始内核映像 vmlinux,因其体积很大。因此,zImage 是我们最常见的内核二进制,可以直接嵌入到固件,也可以直接使用 qemu 进行调试。当然,在 32 位嵌入式领域还能见到 uImage,这是在 zImage 首位增加 64B 的头,描述映像文件类型、加载位置、内核大小等信息。

有些嵌入式设备的文件系统直接嵌入到内核中,这种内置文件系统的机制被称为 ramdisk/initramfs,如果只是使用 extract-vmlinux/binwalk 解压固件,释放大量 shell 脚本和配置文件,是很容易做到的,但是如果想要修改这些文件,并进行重新打包,生成实际设备可以运行的 zImage 内核映像可能不是那么简单。

本文将演示如何在 32位 ARM zImage 中替换 piggy 中的文件系统,我们以 openWRT 的某个版本固件为例进行讲解。

初始设置

下载 OpenWRT ARM zImage-initramfs 映像,这是一个基于 ramdisk 的典型内核映像,不需要额外的文件系统,实际上也无法使用 binwalk 直接提取我们想要修改的操作系统启动提示信息。

$ wget https://downloads.openwrt.org/releases/17.01.0/targets/armvirt/generic/lede-17.01.0-r3205-59508e3-armvirt-zImage-initramfs -O zImage-initramfs
$ openssl dgst zImage-initramfs
SHA256(zImage-initramfs)= 5ad269e95b2db16aea3794dd0e97dabb6f9712184d79b0764bb10a810f8d7639

使用 qemu 启动

$ qemu-system-arm -M virt -m 1024 -kernel zImage-initramfs -append "console=ttyAMA0" -nographic

最小 shell 控制台

BusyBox v1.25.1 () built-in shell (ash)_________/        /\      _    ___ ___  ___/  LE    /  \    | |  | __|   \| __|/    DE  /    \   | |__| _|| |) | _|/________/  LE  \  |____|___|___/|___|                      lede-project.org\        \   DE /\    LE  \    /  -----------------------------------------------------------\  DE    \  /    Reboot (17.01.0, r3205-59508e3)\________\/    -----------------------------------------------------------=== WARNING! =====================================
There is no root password defined on this device!
Use the "passwd" command to set up a new password
in order to prevent unauthorized SSH logins.
--------------------------------------------------
root@LEDE:/#

查看内核版本,找到对应的源码,因为我们有可能会根据内核解压缩的源码,调整重打包方式。

root@LEDE:/# uname -a
Linux LEDE 4.4.50 #0 SMP Mon Feb 20 17:13:44 2017 armv7l GNU/Linux

找到相应版本的内核,推荐在线浏览 https://elixir.bootlin.com/linux/v4.4.50/source/,版本匹配也没有那么重要,因为内核解压缩的核心代码其实一直以来变化不大,位于源码目录 arch/arm/boot/compressed

提取 Piggy

使用 binwalk 分析固件,就像我们在开始说的,binwalk 可能可以提取其中的配置文件,也有可能无法提取,即使提取,也都是归在一个文件夹下,并没有常见的 squashfs 文件系统

$ binwalk zImage-initramfs         DECIMAL       HEXADECIMAL     DESCRIPTION
--------------------------------------------------------------------------------
0             0x0             Linux kernel ARM boot executable zImage (little-endian)
15400         0x3C28          xz compressed data
15632         0x3D10          xz compressed data

毫无疑问,固件开始部分是可以直接运行的未经压缩的用于解压内核的 head.omisc.o,使用 dd 命令提取该部分进行分析,或者直接将整个固件拖入 IDA,选择 arm,并只反汇编固件头部部分。
在这里插入图片描述
运行上述 IDC 脚本,即可得到解压内核代码部分。可以对比内核源码,我们需要找到固件中,内核压缩映像文件的起始地址和结束地址。piggy.S 使用 incbin 关键字引入 piggy.gz。其中全局变量 input_datainput_data_end 分别是 piggy 的起始地址和结束地址。

	.section .piggydata,#alloc.globl	input_data
input_data:.incbin	"arch/arm/boot/compressed/piggy.gz".globl	input_data_end
input_data_end:

毫无疑问,内核解压代码需要这些全局变量,这样才能够解压真正压缩的内核。

putstr("Uncompressing Linux...");
ret = do_decompress(input_data, input_data_end - input_data,output_data, error);
if (ret)error("decompressor returned an error");
elseputstr(" done, booting the kernel.\n");

IDA 反编译的固件头部,寻找 Uncompressing Linux...,对比源码很容易知道 piggy 的实际偏移。
在这里插入图片描述
继续分析汇编,找到全局变量存放的位置
在这里插入图片描述
对比原始固件二进制时,发现压缩结束 magic YZ 后面多出了 4B 数据,这 4B 其实是原始未经压缩的xz大小。实际上 YZ 才是压缩文件的结尾。因此使用 xz 解压时,估计会出现 Unexpected end of input 错误,只需要添加参数即可。
在这里插入图片描述
dd 截取 piggy

$ dd if=zImage-initramfs of=vmlinux.xz bs=1 skip=$[0x3d10] count=$[0x2bb404]                     
2864132+0 records in
2864132+0 records out
2864132 bytes (2.9 MB, 2.7 MiB) copied, 13.595 s, 211 kB/s

解压 piggy

$ unxz --verbose --single-stream < vmlinux.xz > /tmp/vmlinux100 %   2,797.0 KiB / 8,883.5 KiB = 0.315 

我们发现解压后的 vmlinux 内核映像大小果然是 28 c3 8a 00

$ ls -l /tmp/vmlinux                
-rw-r--r-- 1 kali kali 9096744 Dec 20 04:04 /tmp/vmlinux$ python -c "print(0x8ace28)"
9096744

重打包

修改 vmlinux,例如修改启动界面字符串,找到需要修改信息的地址。这些信息显示 initramfs 嵌入在解压后的 vmlinux 中,该部分由一个没有校验和的未经压缩的 CPIO 文档组成(binwalk 可以识别)。

$ strings -t x /tmp/vmlinux | grep "WARNING\!" 76ac3a === WARNING! =====================================

使用 hexedit 编辑,回车键可快速定位此地址,tab 可切换 16 进制 / ASCII 码,ctrl+x 保存并退出。

0076AC3C   3D 20 57 41  52 4E 49 4E  47 21 20 4D  6F 64 69 66  69 63 61 74  = WARNING! Modificat
0076AC50   69 6F 6E 20  73 75 63 63  65 65 64 65  64 21 21 21  3D 3D 3D 3D  ion succeeded!!!====

如果直接使用 xz 压缩,我们会发现压缩后大小大于原始压缩文件 0x2bb404(2864132),通过 Linux 源码可以找到压缩命令位于 xz_wrap.sh

xz --check=crc32 --arm --lzma2=$LZMA2OPTS,dict=32MiB

仅仅使用上述命令压缩还是不够的,压缩后的文件仍然较大,nice 可以达到最大压缩比。最终压缩命令如下

$ xz --check=crc32 --arm --lzma2=,dict=32MiB,nice=128 < /tmp/vmlinux > /tmp/vmlinux.xz             $ ls -l /tmp/vmlinux.xz 
-rw-r--r-- 1 kali kali 2863832 Dec 20 04:26 /tmp/vmlinux.xz

显然小于原始压缩文件,符合要求。要记住,piggy 末尾 4 字节存放原始文件大小,而我们只是修改启动信息,并没有改变原始 vmlinux 大小

$ echo -en "\x28\xce\x8a\x00" >> /tmp/vmlinux.xz # piggy.gz

替换 piggy

$ cp zImage-initramfs zImage-initramfs-warnmod
$ dd if=/tmp/vmlinux.xz of=zImage-initramfs-warnmod bs=1 seek=$[0x3d10] conv=notrunc
2863836+0 records in
2863836+0 records out
2863836 bytes (2.9 MB, 2.7 MiB) copied, 11.1713 s, 256 kB/s

修改内核解压代码中的 piggy 结束地址,input_data_end = hex(0x3d10+2863836) = 0x2befec,原始大小为 0x2bf114

002BF124   EC EF 2B 00  68 F5 2B 00  10 3D 00 00  64 F5 2B 00  64 F1 2B 00  ..+.h.+..=..d.+.d.+.

尝试启动内核,修改成功!

BusyBox v1.25.1 () built-in shell (ash)_________/        /\      _    ___ ___  ___/  LE    /  \    | |  | __|   \| __|/    DE  /    \   | |__| _|| |) | _|/________/  LE  \  |____|___|___/|___|                      lede-project.org\        \   DE /\    LE  \    /  -----------------------------------------------------------\  DE    \  /    Reboot (17.01.0, r3205-59508e3)\________\/    -----------------------------------------------------------=== WARNING! Modification succeeded!!!============
There is no root password defined on this device!
Use the "passwd" command to set up a new password
in order to prevent unauthorized SSH logins.
--------------------------------------------------
root@LEDE:/# 

小结

如果需要增加而不是修改 initramfs 的内容,可能就没那么简单了。因为你需要准确掌握固件的每一个部分,而且需要注意的是 piggy 的 inflated size 也就是 xz 实际大小其实是 input_data_end - 4,这一部分代码位于 misc.cLC0 对象

LC0:	.word	LC0			@ r1.word	__bss_start		@ r2.word	_end			@ r3.word	_edata			@ r6.word	input_data_end - 4	@ r10 (inflated size location).word	_got_start		@ r11.word	_got_end		@ ip.word	.L_user_stack_end	@ sp.word	_end - restart + 16384 + 1024*1024.size	LC0, . - LC0

以本文中的固件为例,piggy 实际大小 0x2bf110,位于固件偏移 0x258,因此如果修改了 piggy 的大小,还需要修改此处地址对应的数据。

在这里插入图片描述
当然,实际还需要考虑各个部分的偏移,可参考 https://gist.github.com/jamchamb/243e6973aeb5c9a2e302a4d4f57f16e1

如果你需要增加内核内容并且改变了原有内核大小,而不只是简单修改,则需要掌握内核解压缩的详细流程,在这里,我们只将内核压缩映像生成流程简单呈现如下,详细流程可参见

vmlinux││ -R.note-R.comment│└─arch/arm/boot/Image││ gzip -f -9 < Image > piggy.gz│└─arch/arm/boot/compressed/piggy.gz││ piggy.S 直接引入piggy.gz│└─arch/arm/boot/compressed/piggy.o││ +head.o│ +misc.o│└─arch/arm/boot/compressed/vmlinux││ -debuginfo│└─arch/arm/boot/compressed/zImage

内核代码中的 head.Smisc.c 用于内核自解压,所以,如果我们需要直接通过修改内核二进制的方式打 patch,则需要了解内核压缩和解压的流程。从上图也可以看出来,piggy 就是压缩过的内核的一部分,其实也是内核的主体部分。

参考文献

Modifying Embedded Filesystems in ARM Linux zImages
Linux内核源码分析–内核启动之zImage自解压过程
Linux2.6 内核启动分析
initramfs 在内核中的作用与实现

这篇关于修改嵌入式 ARM Linux 内核映像中的文件系统的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/580103

相关文章

Linux磁盘分区、格式化和挂载方式

《Linux磁盘分区、格式化和挂载方式》本文详细介绍了Linux系统中磁盘分区、格式化和挂载的基本操作步骤和命令,包括MBR和GPT分区表的区别、fdisk和gdisk命令的使用、常见的文件系统格式以... 目录一、磁盘分区表分类二、fdisk命令创建分区1、交互式的命令2、分区主分区3、创建扩展分区,然后

Linux中chmod权限设置方式

《Linux中chmod权限设置方式》本文介绍了Linux系统中文件和目录权限的设置方法,包括chmod、chown和chgrp命令的使用,以及权限模式和符号模式的详细说明,通过这些命令,用户可以灵活... 目录设置基本权限命令:chmod1、权限介绍2、chmod命令常见用法和示例3、文件权限详解4、ch

Linux内核之内核裁剪详解

《Linux内核之内核裁剪详解》Linux内核裁剪是通过移除不必要的功能和模块,调整配置参数来优化内核,以满足特定需求,裁剪的方法包括使用配置选项、模块化设计和优化配置参数,图形裁剪工具如makeme... 目录简介一、 裁剪的原因二、裁剪的方法三、图形裁剪工具四、操作说明五、make menuconfig

Golang使用minio替代文件系统的实战教程

《Golang使用minio替代文件系统的实战教程》本文讨论项目开发中直接文件系统的限制或不足,接着介绍Minio对象存储的优势,同时给出Golang的实际示例代码,包括初始化客户端、读取minio对... 目录文件系统 vs Minio文件系统不足:对象存储:miniogolang连接Minio配置Min

Linux使用nohup命令在后台运行脚本

《Linux使用nohup命令在后台运行脚本》在Linux或类Unix系统中,后台运行脚本是一项非常实用的技能,尤其适用于需要长时间运行的任务或服务,本文我们来看看如何使用nohup命令在后台... 目录nohup 命令简介基本用法输出重定向& 符号的作用后台进程的特点注意事项实际应用场景长时间运行的任务服

什么是cron? Linux系统下Cron定时任务使用指南

《什么是cron?Linux系统下Cron定时任务使用指南》在日常的Linux系统管理和维护中,定时执行任务是非常常见的需求,你可能需要每天执行备份任务、清理系统日志或运行特定的脚本,而不想每天... 在管理 linux 服务器的过程中,总有一些任务需要我们定期或重复执行。就比如备份任务,通常会选在服务器资

如何安装HWE内核? Ubuntu安装hwe内核解决硬件太新的问题

《如何安装HWE内核?Ubuntu安装hwe内核解决硬件太新的问题》今天的主角就是hwe内核(hardwareenablementkernel),一般安装的Ubuntu都是初始内核,不能很好地支... 对于追求系统稳定性,又想充分利用最新硬件特性的 Ubuntu 用户来说,HWEXBQgUbdlna(Har

Linux限制ip访问的解决方案

《Linux限制ip访问的解决方案》为了修复安全扫描中发现的漏洞,我们需要对某些服务设置访问限制,具体来说,就是要确保只有指定的内部IP地址能够访问这些服务,所以本文给大家介绍了Linux限制ip访问... 目录背景:解决方案:使用Firewalld防火墙规则验证方法深度了解防火墙逻辑应用场景与扩展背景:

Linux下MySQL8.0.26安装教程

《Linux下MySQL8.0.26安装教程》文章详细介绍了如何在Linux系统上安装和配置MySQL,包括下载、解压、安装依赖、启动服务、获取默认密码、设置密码、支持远程登录以及创建表,感兴趣的朋友... 目录1.找到官网下载位置1.访问mysql存档2.下载社区版3.百度网盘中2.linux安装配置1.

Linux使用粘滞位 (t-bit)共享文件的方法教程

《Linux使用粘滞位(t-bit)共享文件的方法教程》在Linux系统中,共享文件是日常管理和协作中的常见任务,而粘滞位(StickyBit或t-bit)是实现共享目录安全性的重要工具之一,本文将... 目录文件共享的常见场景基础概念linux 文件权限粘滞位 (Sticky Bit)设置共享目录并配置粘